Four Year Undergraduate Program (FYUGP) in Geospatial Technology

Under

New Education Policy-2020

Department of Planning & Geomatics Islamic University of Science and Technology

Four Year Undergraduate Program (FYUGP) in Geospatial Technology at Department of Planning & Geomatics

1. Introduction:

The field of Geospatial Technology is rapidly expanding with significant global growth and applications in various industries. Recognizing the demand for skilled professionals in geospatial analysis and technology, we propose to establish a comprehensive four-year undergraduate program in Geospatial Technology. The program aims to produce graduates with strong theoretical foundations and practical skills necessary to excel in the industry and academia. This initiative aligns with the principles of NEP 2020, emphasizing a multidisciplinary and holistic approach.

The Program will be offered in association with the other allied Departments/Centres and will be in line with NEP-2020. The program will be a credit-based offering flexibility in the course curriculum. The BS program in Geospatial Technology will be of four-year duration, comprising eight semesters with Major in Geomatics and Minors in Mathematical Sciences and Computer Sciences. Students admitted to this program, like any other four-year Bachelor's programme will have the option to earn a Master's degree in "Geomatics, Remote Sensing, Geoinformatics and Geospatial sciences" by spending one more year over and above the Bachelor's program (normal duration to earn dual degree is 4+1=5 years). The students admitted to four-year Bachelor's program under Design your degree offered by the University will have an option to earn a major in "Geospatial Technology", for that limited number of seats will be earmarked.

2. Rationale:

Geospatial Technology encompasses the technologies and methods for collecting, analysing, and interpreting geographic information. With the advent of digital mapping and location-based services, the significance of geospatial data has grown exponentially, influencing a wide range of sectors. This program is designed to meet the increasing demand for skilled professionals in geospatial analysis, remote sensing, and Geographic Information Systems (GIS). Here are some key reasons why this program is essential:

1. **Industry Demand**: Growing reliance on geospatial data across sectors such as urban planning, agriculture, environmental management, and transportation has created a demand for professionals skilled in geospatial technologies. This program aims to prepare graduates for roles such as GIS analysts, remote sensing specialists, cartographers, geospatial data scientists, urban planners, and

environmental consultants. Industries ranging from government agencies, environmental firms, and urban development authorities to private technology companies are actively seeking expertise in these areas.

- 2. **Technological Advancements**: Revolutionary advancements in satellite imagery, drones, and big data analytics have transformed how geographic data is captured and analysed.
- 3. **Multidisciplinary Applications**: Geospatial Technology has applications across disciplines, including environmental science, civil engineering, and public health, enabling students to work in diverse fields, enhancing their versatility and employability.
- 4. **Contribution to Society:** Geospatial technologies play a crucial role in addressing societal challenges such as climate change, disaster management, and sustainable development. By training students in these technologies, the program will contribute to building a workforce capable of developing solutions to these pressing issues.
- 5. Research Opportunities: The field of Geospatial Technology offers numerous opportunities for research and innovation. The program will encourage students to engage in research projects, fostering a culture of inquiry and discovery that can lead to new insights and advancements in the field.
- 6. Alignment with NEP 2020: The program aligns with the National Education Policy 2020, which emphasizes the importance of a holistic and multidisciplinary education. By integrating geospatial sciences with other disciplines, the program will provide students with a well-rounded education that prepares them for the challenges of the 21st century.

By establishing this undergraduate program, we aim to produce graduates who are wellequipped to meet the challenges of the geospatial industry and contribute meaningfully to society through innovative solutions.

3. Program Educational Objectives (PEOs)

- **PEO 1**: Graduates will excel in professional skills, fundamental knowledge, and advanced technologies to become leaders in Geospatial Technology.
- **PEO 2**: Graduates will solve complex real-world problems using geospatial technologies and methodologies.

PEO 3: Graduates will engage in lifelong learning with social and ethical awareness in their profession.

4. Programme Outcomes (POs)

Upon successful completion of the BS in Geospatial Technology, graduates will:

PO 1: Apply analytical and critical thinking to solve complex geospatial problems.

- PO 2: Possess entrepreneurial skills to innovate and create value in the geospatial industry.
- **PO 3:** Demonstrate proficiency in modern geospatial technologies and methodologies.
- PO 4: Develop and implement geospatial analysis strategies with ethical considerations.
- PO 5: Engage in self-directed learning in the evolving field of geospatial sciences.

PO 6: Conduct independent research contributing to advancements in the field.

5. Programme Specific Outcomes (PSOs)

After completing the program, students are expected to:

- **PSO 1:** Design and implement geospatial solutions to real-world problems.
- **PSO 2:** Apply geospatial tools and techniques across multidisciplinary fields.
- **PSO 3:** Evaluate the role of geospatial analytics in career and research activities.

6. Programme Details:

In alignment with the transformative vision laid out in the National Education Policy (NEP) of 2020, the Department of Planning & Geomatics at the Islamic University of Science and Technology (IUST), Kashmir, takes pride in inaugurating its Bachelor of Science (BS) program in Geospatial Technology. This comprehensive BS program has been meticulously designed to offer a multidisciplinary curriculum, drawing from the fields Statistics, Computer Science, Artificial Intelligence, and domain-specific knowledge. Through a judicious blend of theoretical foundations, practical applications, and hands-on experience, students will develop a nuanced understanding of GIS and Remote Sensing principles, methodologies, and tools, preparing them to navigate the complexities of real-world Phenomenon, interpretation and modelling.

The program will be credit-based offering flexibility in the course curriculum and will include combination of major, minor, skill-based courses, value-added courses, vocational courses, Multidisciplinary courses, Internship and project work. The program offers a multidisciplinary curriculum drawing from Geography, Computer Science, and Remote Sensing. It includes a blend of theoretical foundations, practical applications, and hands-on experience.

Annexure-I

Structure:

Duration: Four years, eight semesters. Major: Geomatics and Geospatial Sciences. Minor: Data Sciences, Artificial Intelligence. Environmental Sciences

Multiple Entry Exit System (MEES):

After one year: Certificate After two years: Diploma After three years: Bachelor's degree After four years: BS Honors or BS Research degree

7. Intake Capacity, Fee and Eligibility Criteria

Intake Capacity: 32 Students (24-OM & Reserved categories+06-Self-finance+02-NRI Sponsored)

Fee per Semester: INR 19,200/- (OM & Reserved), 50,000/- (Self-finance), 1,00,000/- (NRI)

Eligibility Criteria: Any candidate having passed 10+2 with a minimum of 45% marks from the J&K Board of School Education or from any other recognized board with any of the Science subject as one of the Compulsory subjects.

8. Faculty and Infrastructure Requirements:

The B.Sc. program in Geospatial Technology, although primarily housed within the Department of Planning & Geomatics, will feature a multidisciplinary approach in its curriculum delivery. To enrich the learning experience and ensure a comprehensive educational offering, resources and expertise from various allied departments/centres will be actively integrated. These departments/ Centres, including Computer Science and Engineering (ECE), Computer Science (CS), Centre for Artificial Intelligence, English Language and Literature, Design Innovation Centre, Centre for Disaster Risk Reduction and Department of Environment, Sustainability and Climate Change. Faculty members from these departments, known for their specialized knowledge and experience in their respective fields, will play a crucial role in teaching courses within the BS program in Geomatics. This strategy will help in optimum utilization of interdisciplinary resources available in the University. Initially, existing resources will be utilized, with plans for future expansion, including dedicated GIS lab, classrooms, software licenses, and specialized faculty.

9. Course Structure

Year-1: Foundation in Geospatial sciences & interdisciplinary exposure

Course Code	Course Title	Category	Hours/Week			ek	Credits
			L	Т	Р	S	
DPG100MJ	Introduction to Space Technology & Earth Observation	Major	2	1	1	-	4
Minor-1	Course offered by allied Departments	Minor ¹					4
DOMS100MD	Statistical Methods	Multidisciplinary ²					3
DOELL100AE	Technical Writing	Ability Enhancement ³					3
DJMC100SE	Multimedia Editing	Skill Enhancement ⁴					2
VAC-1	Digital & Technological Solutions	Value added ⁵					2
CVS100VA	Health & wellness						2
	Total C	redits: 20					

1ST SEMESTER

Course Code	Course Title	Category	I	Hours	s/We	ek	Credits
			L	Т	Р	S	
DPG150MJ	Fundamentals of Geospatial Technologies	Major	2	1	1	-	4
Minor-2	Course offered by allied Departments	Minor					4
CDRR100MD	Understanding Natural Disasters	Multidisciplinary					3
DOELL100AE	Communication Skills	Ability Enhancement					3
DOMS201SE	Python Programming	Skill Enhancement					2
CIR150VA	Understanding India	Value added					2
DOMS150VA	Environmental Science						2
	Total	Credits: 20	1	1		1	

Year-2: Specialised Geospatial knowledge

3rd SEMESTER

Course Code	Course Title	Category	Hours/Week			eek	Credits
			L	Т	Р	S	1
DPG200MJ	ICT & Programming for	Major	2	1	1	-	4
	Geoinformation Management						
DPG201MJ	Geospatial Data Bases	Major	2	1	1	-	4
Minor-3	Course offered by allied Departments	Minor					4
CAI101MD	Generative AI/ Managing Disasters	Multidisciplinary					3
DELL201AE	Kashmiri/Urdu Language	Ability					2
		Enhancement					
DOMS200SE	R Software	Skill Enhancement					3
	Total C	credits: 20		I	I	1	

Course Code	Course Title	Category		Hours	ζ.	Credits	
			L	Т	Р	S	
DPG250MJ	Remote Sensing Techniques & Applications	Major	2	1	1	0	4
DPG251MJ	Spatial Analysis	Major	2	1	1	-	4
DPG252MJ	Digital Cartography	Major	2	1	1	-	4
DPG253MJ	Surveying and Navigation Systems	Major	2	-	1	1	4
Minor-4	Course offered by allied Departments	Minor					4
	Total Cre	edits: 20	•	•			

Year-3: Advanced Geospatial techniques

Course Code	Course Title	Category		Hou	rs/Wee	ek	Credits
			L	Т	Р	S	-
DPG300MJ	Photogrammetry & Digital Image Processing	Major	1	1	1	1	4
DPG301MJ	Advanced Geospatial Analysis & Modelling	Major	2	1	1	-	4
DPG302MJ	UAV & Laser Terrain Mapping	Major	2	1	1	-	4
DPG303MJ	Web GIS and Mobile Mapping	Major	2	-	1	1	4
Minor-5	Course offered by allied Departments	Minor					4
	Total Cr	edits: 20	•		•		

5th SEMESTER

Course Code	Course Title	Category		Hour	s/Wee	k	Credits
			L	Т	Р	S	
DPG350MJ	Microwave Remote Sensing	Major	1	1	1	1	4
DPG351MJ	Advanced Remote Sensing Techniques	Major	2	1	1	-	4
DPG352MJ	Hyperspectral and LiDAR Remote Sensing	Major	2	1	1	-	4
Minor-6	Course offered by allied Departments						4
Internship/Com munity Engagement	Internship/Community Management/NCC/NSS/Adult Education/Student Mentoring/NGO etc.	Internship					4
	Total Credits: 20						

Year-4: Speciality and Research

7th SEMESTER

Course Code	Course Title	Category		Hou	rs/We	ek	Credits
			L	Т	Р	S	
DPG400MJ	Spatial Data Infrastructure	Major	2	1	1	0	4
DPG401MJ	Big Data Analytics in Geoinformatics	Major	2	1	1	-	4
DPG402MJ	AI/ML Applications in Geoinformatics	Major	2	1	1	-	4
Minor-7	Course offered by allied Departments	Minor					4
	Research Ethics & Methodology	Research					4
		Ethics &					
		Methodolo					
		gy					
	Total Cred	lits: 20	•	•	•	•	

8th SEMESTER (Honors)

Course Code	Course Title	Category		Hou	rs/We	ek	Credits
			L	Т	Р	S	
DPG450MJ	Geospatial Analytics and Decision Support Systems	Major	1	1	1	1	4
DPG451MJ	Geospatial Applications in Sustainable Development	Major	2	1	1	-	4
DPG422MJ	Discipline Centric Elective-I	Major	2	1	1	-	4
Minor-8	Course offered by allied Departments	Minor					4
DPG451P	Minor Project	Project	4				
Total Credits: 20							

8th SEMESTER (Research)

Course Code	Course Title	Category	Credits						
DCE-3	Geospatial Analytics and Decision	Major	4						
	Support Systems								
Minor-8	Course offered by allied		4						
	Departments								
DPG500P	Research Project	Research Project	12						
Total Credits: 20									

List of Discipline Centric Electives

- I. Geoinformatics for Land Resource Management (4 credits) Transportation Geoinformatics (4 credits)
- I. Geoinformatics for Climate Change Studies (4 credits)
- I. Geoinformatics in Water Resources (4 credits)
- II. Remote Sensing of Cryosphere (Glaciology) (4 credits)
- III. Geoinformatics for Agriculture (4 credits)
- IV. Geoinformatics for Disaster Risk Management (4 credits)
- V. Geoinformatics in Urban and Regional Planning (4 credits)
- VI. Geomorphology and Paleoclimate reconstruction (4 credits)
- VII. Geomatics in Geological Applications (4 credits)
- VIII. Geoinformatics for Forestry and Wildlife (4 credits)
 - IX. Geoportal/WebGIS Development (4 credits)
 - X. Smart Cities: Foundations and Practical (4 credits)
 - XI. Introduction to Facility Management (4 credits)
- XII. Geospatial Approaches to Environmental Sustainability (4 credits)
- XIII. Geomatics in Ecosystem Modelling (4 credits)

¹Minor courses offered by the allied Departments (Data Science/AI)

- ² To be selected from the Multidisciplinary Courses Basket at University Level
- ³ To be selected from the Ability Enhancement Courses Basket at University Level
- ⁴ To be selected from the Skill Enhancement Courses Basket at University Level

⁵ To be selected from the Value added offered at University Level

Year-1: Foundation in Geospatial sciences & interdisciplinary exposure

Course Code	Course Title	Category	H	lours	/Wee	ek	Credits
			L	Т	Р	S	
DPG100MJ	Introduction to Space Technology & Earth Observation	Major	2	1	1	-	4
Minor-1	Course offered by allied Departments	Minor ¹					4
DOMS100MD	Statistical Methods	Multidisciplinary ²					3
DOELL100AE	Technical Writing	Ability Enhancement ³					3
DJMC100SE	Multimedia Editing	Skill Enhancement ⁴					2
VAC-1	Digital & Technological Solutions	Value added ⁵					2
CVS100VA	Health & wellness						2
Total Credits: 20							

Course Code: DPG100MJ	L	Т	Р	S	Credits
Course title: Introduction to Space Technology & Earth	2	1	1	-	04
Observation					

Course Objectives:

- Understand the history and evolution of space technology and Earth observation, including key milestones and pioneering missions.
- Identify and differentiate between various types of satellites, their sensors, and their applications in Earth observation, communication, navigation, and scientific research.
- Gain foundational knowledge about the principles of remote sensing and major international space agencies' contributions to Earth observation and space technology.

Course Outcome:

By the end of the course, students will be able to:

- Explain the historical evolution and technological advancements in space technology and Earth observation.
- Demonstrate a foundational understanding of Earth Observation.
- Describe the role of space technology in societal applications like disaster management, navigation, and environmental monitoring.
- ٠

Module 1: Fundamentals of Space Technology

Fundamentals of Space Technology, Kepler's laws, History and evolution of space technology, Types of satellites and their applications, Overview of international space organizations, Basics of satellite sensors: active and passive sensors; Sensor Characteristics: spatial, spectral, temporal and radiometric resolution.

Module 2: Basics of Remote Sensing

Basics of Remote Sensing, Definition and principles of remote sensing, Components of Remote Sensing Platforms, Sensors, and Data Acquisition, Electromagnetic spectrum: relevance to remote sensing, Interaction of electromagnetic radiation with Atmosphere & Earth's surface, Types of remote sensing: optical, thermal, and microwave, Introduction to satellite imagery and data acquisition.

Module 3: Earth Observation Satellite Systems and Missions

History and Evolution of EO: From Early Observations to Modern Satellites, Overview of Satellite Systems: Types and Functions (Communication, Navigation, and EO Satellites), Notable Earth observation and space technology missions, Case Studies: Indian EO Missions (e.g., Cartosat, RISAT, Oceansat) and Global Missions. Compare the characteristics of different EO sensors and selection of suitable RS data for solving geo-spatial problems.

Module 4: Applications of Earth Observation & Space Technology

Environmental Monitoring, Disaster Management, Urban Planning, etc., Satellitebased navigation and positioning systems (e.g., GPS, IRNSS) • Weather forecasting and communication satellites, Introduction to available satellite datasets for processing and analysis.

Books/Resources:

- i. Satellite Technology: Principles and Applications, 2nd Edition, Anil K. Maini and Varsha Agrawal
- ii. Remote Sensing and Image Interpretation, 7th Edition, Thomas Lillesand, Ralph W. Kiefer, Jonathan Chipman

Course Code	Course Title	Category	I	Tours	s/We	ek	Credits	
			L	Т	Р	S	1	
DPG150MJ	Introduction to Mapping and Geospatial Technologies	Major	2	1	1	-	4	
Minor-2	Course offered by allied Departments	Minor					4	
CDRR100MD	Understanding Natural Disasters	Multidisciplinary					3	
DOELL100AE	Communication Skills	Ability Enhancement					3	
DOMS201SE	Python Programming	Skill Enhancement					2	
CIR150VA	Understanding India	Value added					2	
DOMS150VA	Environmental Science						2	
	Total	Credits: 20			1	1		

Course Code: DPG150MJ		L	Т	Р	S	Credits
Course Name: Fundamentals of	Geospatial Technologies	2	0	1	1	4

Course Objectives:

- Introduction to fundamental concepts of mapping and geospatial technologies, emphasizing their modern-day applications.
- Hands-on experience with tools and techniques for spatial data creation, analysis, and visualization.
- Coverage of key areas including GIS, GPS, Remote Sensing, and Cartography.

Course Outcomes:

By the end of the course, students will be able to:

- Understand the basic concepts and principles behind mapping and geospatial technologies.
- Gain familiarity with key geospatial tools such as GIS, GPS, and Remote Sensing.
- Learn the fundamentals of map design, data collection, and spatial data analysis.
- Be able to apply geospatial technologies in solving real-world problems across different sectors (e.g., urban planning, environmental monitoring).

• Develop a strong foundation for more advanced courses in Geospatial Technology.

Course Contents:

Module I: Introduction to Geospatial Technologies

Understanding Geospatial Technology: Concepts and Definitions, Overview of Key Components: Geographic Information Systems (GIS), Remote Sensing, Global Positioning Systems (GPS), Concept of Geospatial Data: Spatial data Types and Sources: Raster, Vector, and Attribute Data.

Module II: Fundamentals of Mapping and Cartography

Principles of Cartography: Map Design and Interpretation, Types of Maps: Topographic, Thematic, and Cadastral Maps, Map Projections and Coordinate Systems, Map reading and interpretation skills, understanding map symbols, concept of scale and resolution, Introduction to Cartographic Software (QGIS, ArcGIS) for creating maps and visualizations.

Module III: Geographic Information Systems (GIS)

Introduction to GIS, GIS Components: Hardware, Software, Data, People, and Methods, Data Collection and Processing in GIS: Collecting Spatial Data (Field Surveying, Remote Sensing), Basic GIS Operations and Applications, Mapping and analysis of satellite imagery for neighbourhood exploration.

Module IV: Practical Applications and Case Studies

Case studies on environmental mapping, Urban planning and Smart cities, Natural resource management etc. , Hands-on project: Mapping neighbourhood (Project planning and execution, Data collection and analysis, Presentation)

Book/Resources

- i. Concepts and Techniques of Geographic Information Systems. C. P. Lo, Albert K. W. Yeung
- ii. Remote Sensing and Image Interpretation, 7th Edition. Thomas Lillesand, Ralph W. Kiefer, Jonathan Chipman
- iii. Cartography: visualization of geospatial data, M. J. Kraak& F.J. Ormeling, Harlow, Essex: Longman.

Year-2: Specialised Geospatial knowledge

3rd SEMESTER

Course Code	Course Title	Category]	Hour	Credits		
			L	Т	Р	S	
DPG200MJ	Geoinformation Management	Major	1	1	1	1	4
DPG201MJ	Geospatial Data Bases	Major	2	1	1	-	4
Minor-3	Course offered by allied Departments	Minor					4
CAI101MD	Generative AI/ Managing Disasters	Multidisciplinary					3
DELL201AE	Kashmiri/Urdu Language	Ability					2
		Enhancement					
DOMS200SE	R Software	Skill Enhancement					3
	Total C	Credits: 20	•	•	•	•	

Course Code: DPG200MJ	L	Т	P	S	Credits
Course Title: ICT & Programming for Geoinformation	2	1	1	-	04
Management					
Course Objectives:					
• To provide a comprehensive understanding of compu	ter ha	rdwar	e, sof	tware	, and their
uses in geoinformation systems.					
• To develop basic programming skills necessary for	or dat	a han	dling	and	geospatial
analysis.					
• To familiarize students with the techniques and best p	oractic	es for	handl	ing, p	processing,
and analysing geospatial data.					
Course Outcome:					
By the end of the course, students will be able to:					
• Identify and describe the various components of con	npute	r syste	ems a	nd th	eir roles ir
GIS.					
Write basic programs using programming langua	ges r	elevar	nt to	Geoi	nformatior
systems.					
• Effectively manage and process geospatial data, inclu	ıding	conve	rting a	and c	ompressing
data formats.					
Demonstrate proficiency in using GIS software and to	ols suc	ch as A	ArcGI	S and	QGIS.
Module 1: Basics of Computers					
Introduction to Computers: Characteristics, histor	•				-
Hardware Components: Input/output devices,				-	
peripherals. Software Types: Operating systematic	ems	(DOS	, Wi	ndow	s, UNIX)
translators, interpreters, compilers, and editors.					
Module 2: Fundamentals of Programming					
Character set, identifiers, keywords, data types					-
expressions, and statements. Control Statements			-		
for), and switch-case statements. Introduction to	Prog	rammi	ng La	ingua	ges: Basics
of C, Python, Java					
Module 3: Geoinformation Data Handling	1	· 1			1 112
Ideal computer configurations for satellite data a					
Role of Computers in GIS and Remote Se	0				
introduction, importance, and standards. Data	• •		-		-
unsigned, integer, float, double, complex dat	a typ	es, a	na da	ata C	ompression
techniques. Module 4: Practical Applications					
	of a	omani	ora 1	15 0	ffice Teels
Hands-on Computers, Handling and maintenance Practical use of MS Word, MS Excel, and MS					
Techniques for converting and managing geospati			III. Da	ata C	Unversions
Books/Resources:	ai uata	1.			
i. Computers in Geography, Maguire. D. J. Addison-Wesley	Iona	man I	Duhlia	hing (
ii. Basic Programming with Applications, Jain, V.K. Tata Mo	-	-		-	
iii. Elements of Data Compression.Drozdek, A.Vikas Publish					•
in. A first course in Computers Source & Vikes Publishing	0			. .	

iv. A first course in Computers. Saxena, S. Vikas Publishing House Pvt Ltd.

Course Code: DPG201MJ	L	Т	Р	S	Credits
Course Title: Geospatial Data Bases	2	1	1	-	04
Course Objectives:					
• Understand the types and sources of geospatial data	and th	neir si	gnific	ance	in various
fields.					•
• Develop skills in storing, organizing, and managing	geospa	atial d	ata us	sing a	ppropriate
database management systems.		data	40 0004		
• Explore techniques for processing and analyzing geos information.					
Apply geospatial data management principles in real-v	vorld s	cenar	ios an	d proj	ects.
Course Outcome:					
By the end of the course, students will be able to:	1				
• Store, organize, and manage geospatial data using data					
Process and analyze geospatial data to derive meaning		-	-	GIS S	oftware.
• Implement geospatial data management principles in p				~ ~ ~ ~ ~	
• Demonstrate proficiency in using GIS software for geo Module 1: Fundamentals of Database Management System		li data	mana	geme	nt tasks
Database concepts, database development, impl		ation	and d	locian	Databasa
management system (DBMS): Network DBMS					
DBMS, Comparison between these DBMS. Editin					
Module 2: DBMS Concepts	8	000111	8 012		
Concept of Keys in a database. Theoretical an	d mat	hemat	ical u	inders	standing of
database querying: Relational Algebra, Queryin	g usir	ng SQ	L. St	eps i	n database
design, GIS Data modelling using Entity Relat	tionshi	ip Dia	agram	s. GI	S database
application development. GIS database application					
Module 3: Advanced DBMS: Database Backup, Transacti					
Recovery, Data Storage and Causes of System					
Mirroring, Shadow Paging. Data Integrity: Entity	-	•			
Domain Integrity. Data Security: Requirements			. Rol	e of	a database
administrator. Granting and Revoking Privileges a Module 4: Regional and Global Databases: Global land use			lobal		stom mone
datasets related to vegetation, topography, land					
FAOSTAT etc., global NPP datasets. Global for		-			
resource assessment. Global Seeps database.				0	
ASTER, CartoDEM. Other global datasets like l		-			
DCW VMAP0, GEOnet names server, gridded					
Geo Cover, Introduction to Global and National					
USGS Earth Explorer NASA Earthdata, Googl	e Ear	th En	gine	(GEE), Bhuvan,
VEDAS, India Water Portal, Bhoonidhi, Nakshe, I	MOSE	AC e	tc.		
Books/Resources:					
i. R. Elmasri, S.B Navathe. Fundamentals of Database Sy					
ii. An introduction to Informatics in Organizations Benyn Systems: Palgrave (formally Macmillan).	on-Da	vies,	P. (20	02). I	nformation
iii. An introduction to Database Systems, Date, C. J. (2000)	. Read	ling, N	Л.А. А	Addiso	on-Wesley.
iv. Database Management Systems, Ramakrishnan, R. and	l J. Ge	ehrke	(2003)). Bos	ston, M. A,
21 McGraw.					_
Detailed Medial Designs The feasibility (1D' '1 T		T'I /1	004	0	

v. Database Model Design: The fundamental Principles Teorey, T.J. (1994). San Mateo, CA, Morgan Kaufmann.

Course Code	Course Title	Category		Hours	Credits		
			L	Т	Р	S	
DPG250MJ	Remote Sensing Techniques & Applications	Major	2	1	1	0	4
DPG251MJ	Spatial Analysis	Major	2	1	1	-	4
DPG252MJ	Digital Cartography	Major	2	1	1	-	4
DPG253MJ	Surveying and Navigation Systems	Major	2	-	1	1	4
Minor-4	Course offered by allied Departments	Minor					4
	Total Cro	edits: 20	•		•	•	

Course Code: DPG250MJ	L	Т	P	S	Credits
Course Title: Remote Sensing Techniques and Application	2	1	1	-	04
Course Objectives:					
• Analyse and interpret spectral signatures for varie vegetation, water, and soil.	ous	surfa	ice fe	eature	es, such as
• Explore the characteristics and operational principles sensors.	of re	mote	sens	ing s	atellites and
 Apply advanced remote sensing techniques for dat interpretation in diverse real-world applications. 	a ac	quisi	tion,	proc	essing, and
Course Outcome:					
By the end of the course, students will be able to:					
 Explain the principles of EMR and their interaction wi 	th Fa	arth's	surfs	nce	
 Analyze and interpret spectral signatures for different s 					
					an a a n a
• Understand the working principles and characteristics				-	
Apply remote sensing data to real-world applications u	<u> </u>	adva	ancea	tech	niques.
Module 1: Electromagnetic Radiation and Spectral Signat		1	1.	c	
Introduction to EMR: Wavelength-frequency-ene					
spectrum, and its properties, EMR Interac					
transmission, atmospheric windows, and energy					
Spectral Signatures: Spectral reflectance curv	es, o	conce	ept c	OT SI	gnatures for
different surface features (vegetation, water, soil).					
Module 2: Satellites & Sensors	01.		C	, , .	Г
Satellite Characteristics-Orbits: Polar/Non-Polar					
Source: Passive vs. Active, Measurement Techn	-			-	-
Imager; Sounders OM Line scanners, CCD Li					
Characteristics: Spatial, spectral, and temporal re					
offs in sensor selection. Characteristics of importa					
SPOT, IRS, MODIS, IKONOS, ASTER, Sentine		eoey	e, w	onav	iew, (Digital
Globe, Maxar) KOMPSAT, CARTOSAT, RISAT e	etc				
Module 3: Data Acquisition and processing:	nd I	T A 3 7	haga	l dat	
Data Acquisition Methods: Satellite, aerial, and techniques. Data formatic Bastar and vector data					
techniques. Data formats: Raster and vector data					
Techniques: Calibration and atmospheric correc resampling techniques, Image Enhancement Te					
histogram equalization, and spatial filtering		-			-
composites, true and false color composites,					
(PCA) for data dimensionality reduction.	1 1 1110	Ipai	COI	ipon	and Analysis
Module 4: Image Interpretation and Applications					
Visual Interpretation: Techniques for analyzing re	mote	sen	sing i	mage	es Principles
of visual image interpretation: elements of visual i					
and factors governing the interpretability. Use of a	-		-		-
data interpretation. Ground Truth Collection: im		-			
truth details. Application of Remote sensing: I	-				
Environmental monitoring, Urban Planning					-
Applications in Emerging Fields: Energy and U					•
selection (solar, wind), power line corridor ma					
Geospatial Technology for Smart Applications:		-		-	-
geospatial AI, and real-time monitoring systems.	mu	5-40		0	
Books/Resources:					
DUURS/INCOULCES.					er, 1994, 3rd

Taylor & Francis.

	Ed. NY: John Wiley and Sons, Inc.
ii.	Introductory Digital Image Processing, A Remote Sensing Perspective, Jensen, J. R.,
	1996, Upper Sanddle River, Prentice Hall.
iii.	Introduction to Remote Sensing Cracknell, A.P and L.W.B.Hayes, 1993, London:
	Taylor & Francis

	e Code: DPG251MJ	L	Τ	P	S	Credits
	e Name: Spatial Analysis	2	0	1	1	4
Cours	e Description:					
•	Introduces advanced concepts and practices in Geographic Infor	mati	on S	yste	ems	(GIS) for
	spatial data analysis.					
•	Explores capabilities of GIS in capturing, analysing, and visualizi	ng g	eosp	atia	l dat	a.
•	Emphasizes hands-on experience with GIS tools and technique	es,	focu	sing	on	practica
	applications.					
•	Highlights GIS applications in diverse fields, including urban	pla	nnin	g, e	nvir	onmental
	management, Climate Change Impact Assessment					
Cours	e Outcomes:					
By the	end of the course, students will be able to:					
•	Understand the basic concepts, definitions, and components of GI	S.				
•	Explore different types of GIS data, including vector and raster da	ita m	ode	ls.		
•	Develop skills in geospatial data acquisition, processing, and man	ager	nent	•		
•	Apply spatial analysis techniques using GIS software.					
•	Interpret and present geospatial information effectively.					
Cours	e Contents:					
Modu	le 1: Introduction to GIS					
	Review of GIS fundamentals: Definitions, Components, Applic	atio	ns, (GIS	Arc	hitecture
	Desktop, Web, Mobile, and Cloud GIS platforms, Differences an	d Us	es, (GIS	Data	Models
	Vector, Points, Lines, Polygons (Topology, Spatial Relationship	os), l	Rast	er: (Gride	s, Images
	(Resolution, Resampling), Concept of Attribute Data, GIS Data Q		•			
	Accuracy, Precision, and Error Sources, Standards in GIS Data	n Ma	nag	eme	nt (I	Metadata
	FGDC, ISO Standards)					
Modu	le 2: Geospatial Data and Data Collection Methods					
	Geospatial Data Types and Sources: Primary vs. Secondary D					-
	Data: Satellite Imagery, Aerial Photography, GPS Data, an					•
	Available Data Sources and Data Portals; Data Collection					
	Georeferencing, Common Projections Used in GIS, Spatial D					
	National and Global Data Portals; Integration of Non-Convention	onal	Data	a Sc	urce	es (Socia
	Media, Crowdsourcing).					
Modu	le 3: GIS Data Analysis and Visualization	NT - 4	1	۸	. 1	
	Spatial Data Analysis: Vector Analysis: Buffer, Overlay, and D				-	
	Analysis: Map Algebra, Terrain Analysis (Slope, Aspect); Intr					
	(Interpolation, Hot Spot Analysis); Data Visualization and C			•		1
	Cartographic Design, Creating Effective Maps (Symbolizati				-	-
	Working with Map Layouts in GIS; Spatial Querying and Data					
	Spatial Queries, SQL for GIS. Filtering and Extracting, Tempor	arG	15:	I ime	e-ena	bled Dat
Modul	Analysis e 4: Applications of GIS in Spatial Analysis					
Mouui	Urban Analytics: Smart Cities, Infrastructure Planning, Environm	nent	al M	ode	lling	: Climate
	Change Impact, Hazard Zonation; Pollution Mapping Monitoring a				-	
	GIS: Disease Mapping, Resource Allocation.	10 10	i o a c i		1 40	ine mean
Book/	Resources					
i.	Concepts and Techniques of Geographic Information Systems. C. P. Lo	. Alb	ert k	w	Va	
1.			UIL I	.	. 100	ing

Course code: DPG252MJ	L	Т	Р	S	Credits
Course title: Digital Cartography	2	1	1	-	04
Course Objectives:					
• Understand the significance and applications of envi	ronme	ental	map	ping i	n various
fields.				~	
• Learn the methods and tools used for collecting geospat	tial da	ta, ir	ncludi	ng fie	ld surveys
and remote sensing.		•		I	
• Develop skills to analyze and interpret geospatial data for					
• Apply mapping techniques to real-world environmental Course Outcome:	scena	rios	and pi	ojects	
By the end of the course, students will be able to:					
-					
• Understand the principles of cartography and digital ma	-	-			
• Use cartographic software and tools for map creation an		-			
 Apply design principles to create effective and aesthetic Develop and present a complete digital mapping preject 		easi	ng ma	ps.	
Develop and present a complete digital mapping project Module 1: Map Making					
Maps: Introduction, types of maps, uses of maps. C	ortogr	anhu	v anal		and digital
cartography, cartographic generalizations. Map					
layout, map scale, legend, annotations. Coordinate					
projections: introduction, properties and aspects of a					
map projections.	map p	lojet	uons,	Class	
Module 2: Data Sources and Visualization					
Data sources for mapping: remote sensing, field obs	orvoti	one	CDS	mana	and other
ancillary data. Survey of India (SOI) map index, U				-	
National geospatial data policy, Data products w.r.t				-	-
EIA and geology. Visualization techniques: V			-		
features/surfaces, virtual reality and scenario mapp		-			
color theory, and thematic map creation.	mg, i	Jayo	ut ues	ign, i	ypography,
Module 3: Advanced Topics in Digital Cartography					
Interactive and Web Mapping: Introduction to c	nlina	mai	nina	nlatf	orme (e.g
Google Maps, Leaflet, Mapbox); 3D Mapping an		-		-	
creating three-dimensional visualizations; Carto					-
•					•
Sources of error and methods for quality assurance	; Euno	28 III	Carto	graph	y: Privacy,
accessibility, and representation in digital mapping. Module 4: Applied Cartography and Digital Mapping					
	ia dat	dan	(ity).	Darie	mina mona
Creating thematic maps (e.g., choropleth, isarithm					
for specific applications (e.g., urban planning, disa					
monitoring); Data integration and georeference	0		. .		1 0
complete digital map project (topic of choice);	Projec	i m	ciude	s plai	ining, data
collection, map design, and final presentation.					
Books/Resources: i. Remote Sensing and Image Interpretation, Lillesand, R. M. and	RWI	Ziefe	r 199/	3rd F	d NY Iohn
Wiley and Sons, Inc.	11. 1	xicici	, 1774	, 51 u I	A. IVI. JUIII
ii. Concepts and techniques of Geographic Information System: Lo C					
 of Geographic Information Systems.DeMers, M.N.2002 2 Wiley an iii. Elements of Cartography. Robinson, Arthur H., Joel L. Morrison, I 					

and Stephen C. Guptill: John Wiley and Sons, New York.

iv. Cartography: visualization of geospatial data, M. J. Kraak& F.J. Ormeling, Harlow, Essex: Longman.

Annexure-I

Course Code: DPG253MJ	L	Т	P	S	Credits
Course Title: Surveying and Navigation Systems	1	1	1	1	04
Course Objectives:					
• To provide a comprehensive understanding of various GN	NSS sv	stems	s.		
• To familiarize students with the fundamental principles o	•			navig	ation.
• To introduce both traditional and modern surveying me				-	
geospatial data collection.				"PP"	
• To explore practical applications of GNSS in vario	ous fie	elds s	such	as a	griculture.
transportation, and mapping.					8,
Course Outcome:					
• Identify and explain the components and functionalities of	of GNS	SS sys	stems	5	
• Comprehend the principles of satellite-based navigati		•			ilation and
trilateration.	,				
• Perform surveying tasks using both traditional methods	(chain	. com	pass	. theo	dolite) and
modern tools (total station, DGPS).	(,	-r	,	
• Utilize GNSS technology in real-time kinematic position	ning ar	nd var	ious	appli	cations like
agriculture, transportation, and mapping.	8				
Module 1: Introduction to GNSS and GPS					
Introduction to GNSS, concept, types, component	s Glo	bal a	nd I	Regin	nal GNSS [.]
GPS, GLONASS; Galileo, BeiDou, NavIC etc.; Geo					
accuracy, Wave frequencies, error corrections; Gro	*		·		± ·
non-spatial data for analysis and modelling; GPS s					-
DGPS; Applications of GPS in resources surveys, n	-				-
navigation.	r r	0,			
Module 2: Introduction to Surveying					
Geographic data collection, spatial location and refe	rence.	Ident	ifica	tion o	of problems
during the fieldwork. Basic principles of surveying					+
techniques; Procedure of field survey; Collection	of da	ta- is	sues	and	challenges;
Designing database structure for the data collected.					_
Module 3: GNSS Applications:					
Real-time kinematic (RTK) positioning, GPS	app	licatio	ons	in	agriculture,
transportation, and mapping, Integration of GNSS v	with C	HS; In	ntrod	uction	n to SBAS,
CORS					
Module 4: Surveying Techniques					
Traditional Field Equipment: Theodolite, Abney Le					
latest technology instruments like GPS, 3D Laser S					
field mapping. Compilation of data: Data quality				-	-
creation of a geospatial database. Data interpretat	tion b	y inte	grati	on o	t field and
remotely sensed data.					
Books/Resources:	. Nov		- Ch	: ah a a	Drichona
i. GPS Satellite Surveying, Leick A (1995): 2nd end. Wile	y, mev	v yori	s Ch	icnes	e brisbane
Toronto Singapore.ii. GPS Theory and Practice, Hofmann-Wellenhof B, Lichter	neago	rЦ·	(200)	7) 5+	ringer (5th
eds), Wien New York.	negge	1 11.	(200	<i>i</i>). Sf	inger (Sul
iii. Global Positioning System and GIS, An Introduction, Ke	nnedu	м	Δnn	Arbo	r MI 1996
Concepts and techniques of Geographic Information Syste	•				
iv. Advanced Surveying, 2017: Pearson. Gopi Satheesh, R.Sa					
11. Maraneea Surveying, 2017. Fearson. Oopi Sauleesii, K.Sa	unxun	, . 1			

Year-3: Advanced Geospatial techniques

Course Code	Course Title	Category		Hou	Credits		
			L	Т	Р	S	
DPG300MJ	Photogrammetry & Digital Image Processing	Major	1	1	1	1	4
DPG301MJ	Advanced Geospatial Analysis & Modelling	Major	2	1	1	-	4
DPG302MJ	UAV & Laser Terrain Mapping	Major	2	1	1	-	4
DPG303MJ	Web GIS and Mobile Mapping	Major	2	-	1	1	4
Minor-5	Course offered by allied Departments	Minor					4
	Total Cr	edits: 20					

Annexure-I

Course Code: DPG300MJ	L	Т	Р	S	Credits
Course Name: Photogrammetry & Image Processing	g 2	1	1	-	4
Course Objectives:					
• Provide students with a comprehensive ur	ndersta	nding o	of ph	otogra	mmetry and
advanced image processing techniques.					
• Introduce the principles of photogrammet	ry, di	gital in	nage	analys	sis, and 3D
modelling.					
• Familiarize students with data acquisition wo	rkflow	s in pho	togra	mmetr	y.
• Emphasize the integration of photogrammetri		-	-		•
learning.					
• Explore practical applications in urban plan	nning,	agricult	ure,	and er	nvironmenta
monitoring.	U,	U			
Course Outcomes:					
By the end of the course, students will be able to:					
• Demonstrate knowledge of the fundament	al pri	nciples,	histo	ory, a	nd types of
photogrammetry.	_	-		-	
• Apply stereo photogrammetry techniques to c	reate 3	D mode	els an	d Digi	tal Elevation
Models (DEMs).				-	
• Utilize advanced image processing technique	ies suc	h as fi	ltering	g, ban	d math, and
PCA in data analysis.					
• Integrate photogrammetry with LiDAR, GIS	S, and	machin	e lear	ning f	for advanced
applications.					
Module 1: Fundamentals of Photogrammetry					
Introduction to Photogrammetry: Principle					
drone-based) Photogrammetric Cameras:					
resolution; Stereo Photogrammetry: 3D	model	creation	n and	DEN	1 extraction
Platforms and Sensors					
Module 2: Image Processing Techniques			_		
Uni-variate and multi-variate statistics in	U				0 0
introduction, high pass filter, low pass filt					
and detection filters. Band math and rati	-	-			
SAVI). Principal component analysis (P					
Fuzzy c-means clustering. Classification A				t; Kap	pa statistics.
Module 3: Photogrammetric Data Acquisition and				1 61:~	ht alonains
Data Acquisition: UAV photogramme	-			-	
Applications in Urban Planning and		structur	e M	apping	g, Precision
Agriculture, Environmental Monitoring etc Module 4: Emerging Techniques					
Integration of Photogrammetry with Li		nd CIS	· Mo	ohino	Looming in
Image Processing	JAK a		, wia	cinne	Learning II
Book/Resources					
1. McGlone, J. C. (2013). Manual of Photogram	metry	ASDRO	3		
2. Mikhail, E. M., Bethel, J. S., & McGlone,	•			luction	n to Modern
Photogrammetry. Wiley.	J. C.	2001).		auctio	
Phologrammetry whey					

3. Richards, J. A., & Jia, X. (2006). Remote Sensing Digital Image Analysis. Springer.

Course Code: DPG301MJ	L	Τ	P	S	Credits
Course Name: Advanced Geospatial Analysis & Modelling	2	1	1	-	4
Course Objectives:					I
• Develop expertise in advanced geospatial analysis and m	odelir	ig teo	chnic	jues	for solving
complex spatial problems.		U			C
• Apply spatial statistics and geostatistical methods to ana	yze ar	nd in	terpr	et sp	atial data.
• Utilize 3D spatial analysis to explore and visuali	ze m	ulti-o	lime	nsio	nal spatial
phenomena.					-
• Implement predictive modelling approaches to forecast s	patial	trend	ls an	d pa	tterns.
• Integrate remote sensing data with geospatial r	nethod	lolog	ies	for	advanced
applications.					
Course Outcomes:					
By the end of the course, students will be able to:					
Integration of Remote Sensing Data for Advanced Mode	lling				
• Remote Sensing Data Fusion: Combining data from d		nt so	urce	s (e.	g., optical,
radar, LiDAR) for comprehensive analysis and modellin	-				
• Change Detection: Methods for identifying changes	in lar	nd u	se, v	/eget	tation, and
environmental conditions using remote sensing data.					
• Time-Series Analysis: Analyzing temporal changes		rer	note	sen	sing data,
including vegetation indices (NDVI) and land-cover cha	nges.				
Module 1: Advanced Spatial Analysis Techniques	·1 /·			1	• 1
Spatial Statistics: Understanding spatial data distr					
point pattern analysis; Geostatistical Methods: Intro			-	-	-
analysis, and spatial interpolation techniques; Hotspo Module 2: 3D Spatial Analysis and Modelling	Anar	ysis,	Spai	.1ai r	legression.
Modelling; Techniques for visualizing and analyzing	three_	dime	nsio	nal s	natial data
including terrain models and city models; Tools and I					
analysis in a 3D environment, including viewshed and					
Module 3: Predictive Modelling and Machine Learning in G	•		-		
Predictive Modelling, Understanding and applying					algorithms
(e.g., Random Forest, SVM) to predict spatial					
Classification: Using supervised and unsuperv					
classification and feature detection; Deep Lea	rning	tec	hniq	ues,	including
Convolutional Neural Networks (CNNs) for image a	nalysis	s and	l obj	ect d	letection in
geospatial data.					
Module 4: Integration of Remote Sensing Data for Advance					
Remote Sensing Data Fusion: Combining data from					
radar, LiDAR) for comprehensive analysis and mo	dellin	g; C	hang	e D	etection &
Time-Series Analysis					
Book/Resources	11				
i. Integration of Remote Sensing Data for Advanced Mode		nt cc	11800		a ontion1
ii. Remote Sensing Data Fusion: Combining data from d radar, LiDAR) for comprehensive analysis and modellin		it so	urce	s (e.	g., optical,
iii. Change Detection: Methods for identifying changes	-	nd u	6 6 1	ie net	tation and
environmental conditions using remote sensing data.	111 Idl	iu u	sc, 1	regel	anon, and
		ror	note	con	aina data
iv. Time-Series Analysis: Analyzing temporal changes	IISINO				

Course Code: DPG302MJ	L	Т	P	S	Credits
Course Name: UAV & Laser Terrain Mapping	2	1	1	-	4
Course Objectives:					
• Introduce students to the innovative use of terrain mapping and analysis.	f UAVs	and	LiDAI	R tecl	nnology for
 Provide a blend of theoretical discussions, c comprehensive learning. 	ase studi	es, and	l pract	tical e	exercises for
• Enable students to understand UAV system		R tech	nolog	y, and	d geospatia
tools for data collection, processing, and analDevelop skills in terrain modelling and its approximately statement of the sta	•	ns in fo	orestry	, urba	an planning
and disaster management.					
Course Outcomes:					
By the end of the course, students will be able to:					
• Define UAV components and explain their ro					
• Describe LiDAR working principles and models.	its appli	cations	s in g	genera	ting terrair
• Integrate UAVs with LiDAR systems and op	timize th	eir usa	ge for	data a	acquisition.
• Perform data processing and generate 3D term			-		-
Module 1: Fundamentals of UAVs in Terrain Ma			U		
Introduction to UAVs; Definition, types, a		onents	of U	AVs,	History and
Evolution: Development of UAV techno	-				•
mapping, Regulatory Framework; Global a					
management, and safety guidelines, Data	0		U		· •
mission execution, and UAV sensors (optic	-			-	
Module 2: LiDAR Technology and Principles	,	1	<i>,</i> , , ,	1	,
Introduction to LiDAR: working principles	compor	ents (s	sensor	, GPS	, IMU), and
data acquisition process; Laser Terrain N					
emission, reflection, and 3D point cloud g					
LiDAR (ALS), Terrestrial LiDAR (TLS),					
Terrain Analysis: Digital elevation mod			•	, II	-
hydrological studies.	(/,	·····r	J	·rr8,
Module 3: Integration of UAVs with Laser Techn	ology				
UAV-LiDAR Systems: Hardware integration	0.	senso	r con	figur	ations and
operational workflow; Data Collection T	-			-	
LiDAR surveys, altitude considerations, and	-		-		
Calibration: Georeferencing, ground c					
minimization; applications in forestry, urba					
Module 4: Data Processing and Applications	Prannin	. <u>,</u>	dibust	.01 1110	inagement
Point Cloud Processing: Filtering, classi	fication	and se	eomen	tation	of LiDAI
data; 3D Terrain Modeling: DEM and			-		
analysis; Advanced Analytical Tools: In				. .	-
QGIS) and Machine Learning for feat	-				
applications, autonomous UAV systems,					
laser mapping.	una rata	le uu i		01105 1	n orre un
Book/Resources					
i. Introduction to UAV Systems" by Paul G. Fa	hlstrom	and Th	omas	J. Gle	ason
ii. Principles of LiDAR Remote Sensing" by					
Stubbins.				5 ul	
iii. Digital Elevation Model Technologies and A	nnlicatio	ns" hv	David	IF M	aune
iv Period Sensing and GIS Integration" by Mic		-		171	uun

Course Code: DPG303MJ	L	Т	Р	S	Credits
Course Name: Web GIS and Mobile Mapping	2	1	1	-	4
Course Objectives:					
• Introduce the principles and architecture of	f Web	GIS	and	mobil	le mapping
technologies.					
• Explore tools like ArcGIS Online and OpenLay	ers for	Web	GIS aj	oplicat	tions.
• Develop skills in real-time data collection using	g mobil	e map	ping s	ystem	s.
• Enable students to create Web GIS application	s using	prog	ammi	ng lar	nguages and
databases, with applications in urban planni	ng, env	vironn	nental	moni	itoring, and
disaster management.					
Course Outcomes:					
By the end of the course, students will be able to:					
• Understand the architecture, components, and b	enefits	of We	eb GIS	S platf	orms.
• Utilize mobile mapping technologies for fi	ield da	ta co	llectio	on an	d real-time
applications.					
• Apply Web GIS and mobile mapping tools to	urban	envi	conme	ental, a	and disaster
management scenarios.					
• Develop basic Web GIS applications using H	TML,	JavaS	cript,	Leafl	et API, and
geospatial databases.					
Module 1: Introduction to Web GIS					
Basics of Web GIS: Architecture, compo					
Platforms: ArcGIS Online, Google Maps AF	PI, Ope	nLaye	rs; Sp	oatial	Data on the
Web: WMS, WFS, and WCS services					
Module 2: Mobile Mapping Technologies	NGG				
Introduction to Mobile Mapping: GPS, G					
Mapping Systems: Platforms, workflows,				Real-	Time Data
Collection: Applications in field mapping and	ground	i troth	ing.		
Module 3: Web GIS Applications	wdoou	raad	CIG	and E	Orticipator
Urban and Environmental Monitoring; Cro Mapping Mobile Mapping in Disaster Manag					
Survey123, Open DataKit (ODK), Collector f			Data	Colle	
Module 4: Development of Web GIS Applications	of Alco	110			
Introduction to Web GIS Programming: Basic	rs of H	тмі	Iava	Crint	and Leaflet
API; Database Management: Storing and que				-	
Book/Resources	<u>, 115 8</u>	Jospai	uu uu		
i. Longley, P. A., Goodchild, M. F., Maguire	DI	&	Rhind	D	W (2015)
Geographic Information Systems and Science.		., a		., . .	(2013)
<i>ii.</i> Fu, P., & Sun, J. (2011). Web GIS: Principles a	•	licatio	ons. E	SRI P	ress.
	nu App	ncan	711 5 , Ľ	JILL	

Course Code	Course Title	Category		Credits			
			L	Т	Р	S	-
DPG350MJ	Microwave Remote Sensing	Major	1	1	1	1	4
DPG351MJ	Advanced Remote Sensing Techniques	Major	2	1	1	-	4
DPG352MJ	Hyperspectral and LiDAR Remote Sensing	Major	2	1	1	-	4
Minor-6	Course offered by allied Departments						4
Internship/Com munity Engagement	Internship/Community Management/NCC/NSS/Adult Education/Student Mentoring/NGO etc.	Internship					4
	Total Cre	edits: 20				•	

Annexure-I

Course Code: DPG250MJ	L	Т	Р	S	Credits
Course Name: Microwave Remote Sensing	2	1	1	-	4
Course Objectives:					
• Understand the principles, systems, and application	ations of	fmicro	owave	e remo	te sensing.
• Explore radar imaging techniques and sensor-ta	arget int	eraction	ons in	the m	icrowave
region of the electromagnetic spectrum.					
• Integrate microwave data with other remote ser	nsing m	ethods	for e	nhanc	ed analysis.
Apply microwave remote sensing techniques to	land u	se, veg	getatic	on, hyc	lrology, and
climate studies.					
Course Outcomes:					
By the end of the course, students will be able to:					
• Understand the principles and components of SAB systems	microw	vave re	emote	sensi	ng, including
SAR systems.	inclu	dina	rodor	nolo	rization and
 Analyze sensor and target characteristics, penetration. 	, inclu	ung	radar	pola	rization and
 Model radar backscattering and interpret sc 	attering	mec	hanisr	ns of	surface and
volume features.	accornig	, mee	liumor	115 01	Surface und
• Apply microwave remote sensing techniques	for land	use,	vegeta	ation,	hydrological,
and climate studies.					
Module 1: Introduction to Microwave Remote Sens	0				
Microwave region of Electromagnetic s	-			-	-
microwave remote sensing. Details of the Sp					
ERS/JERS-1/ALOS/ASAR/AIRSAR SAR sy			0		0
of radar remote sensing viz-à-viz optical rem		0			-
SLAR, Synthetic Aperture Radar (SAR).	SAR vi	ewing	geor	netry:	slant range,
ground range, azimuth, look angle, inciden	ce angl	e, and	l Loca	al inci	idence angle.
Backscattering coefficient and sigma naught	expressi	ion of	SAR.	Rada	r equation for
point and distributed targets.					
Module 2: Sensor and Target Characteristics					
Concept of wavelength and frequency				-	
polarization, Dielectric constant, SAR dep					
angle and frequency. SAR sensitivity to sur	face ro	ughne	ss, Ro	oughne	ess-frequency
dependence, Roughness-incidence angle d	epender	nce. S	Speckl	e: De	efinition and
causes of speckle in SAR images, speckle ren	noval n	nethod	s; Lee	e, Lee-	-sigma, Frost,
Gamma adaptive filters, Multi-looking, InS	AR; To	pogra	phic i	nfluer	ices on radar
imaging: shadow, foreshortening and layover	, metho	ds for	mini	mizing	g topographic
influences on SAR images.					
Module 3: Radar Backscattering Modelling					
Backscattering of earth's features, Introduct	ion to 1	adiati	ve tra	nsfer	theory, some
common modeling approaches like discrete,	continu	lous, f	irst o	der so	cattering, and
second order scattering. Examples of these r	nodelin	g appi	oache	s viz.	cloud model
and MIMICS model,					
Scattering mechanisms of SAR signals w	vith sur	face	(bare	soil)	and volume
(vegetation),				,	
Interferometry: concept and application, b	ase lin	e, rep	eat p	ass in	terferometry,
Polarimetry.		L			
Module 4: Applications of Microwave Remote Sens	ing				
Land Use and Land Cover Mapping; Soil	-	e and	Vege	etation	Monitoring;
Flood Mapping and Hydrological Studies;	Applic	ations	in S	now,	Glacier, and
Ocean Monitoring; Forestry: Woody biomass	s and tro	ee heig	ght est	timatio	on; Emerging
Trends; PolSAR and Multi-Frequency SAR		-	-		

Data; Microwave	Remote	Sensing	in	Climate Studies
Data, Microwave	Remote	Sensing	111	Children Studies

Book/Resources

- i. Satellite microwave remote sensing, Allan, T. D.:Chichester, Ellis Hardwood Microwave remote sensing, Ulaby, F. T., Moore, R. K., Fung, A. K., vol.I, II & III. Massachusetts, Adison Wilsey.
- ii. Imaging radar for resource survey, Trevett, J. W., Chapman and Hall, London Microwave
- iii. Remote Sensing and Image Interpretation, Lillesand and Kiefer: John Wiley and Sons,

	rse Code: DPG351MJ	L	T	P	S	Credits
	se Name: Advanced Geoinformatics	2	1	1	Х	4
Cour	se Objectives:					
•	Equip students with advanced knowledge of Getternds and SDI design.	eoinfo	rmatics	s, focu	ising o	on emerging
•	Explore contemporary issues in data standardiz integration of socio-economic data for decision-			esign	metho	odology, and
•	Teach advanced techniques in interpolation and creation.		-	levatio	on Mo	odel (DEM
•	Apply Geoinformatics methods to solve cor various domains.	nplex	geosp	atial	challe	nges acros
Cour	rse Outcomes:					
	e end of the course, students will be able to:					
by u		d magaa	lata av	ality	coolo	and avatan
•	Apply advanced geoinformatics concepts to addesign challenges.		-			
٠	Design and manage Spatial Data Infrastructures					-
•	Use multi-criteria analysis and advanced s generation, for decision-making.	patial	mode	elling,	inclu	iding DEM
•	Integrate geospatial data standards and tools t	for ter	rain ai	nalysis	s and	spatial dat
	management.			-		-
Mod	ule 1: Advanced Concepts in Geoinformatics					
	Geoinformatics Overview, Advanced co	ncept	s and	eme	erging	trends i
	geospatial data science;	-				
	Spatial Data Infrastructure (SDI): Design,	devel	opmer	nt, and	1 man	agement o
	SDIs for effective geospatial data access	; Ge	ospatia	l Dat	ta Sta	indards and
	Interoperability: OGC standards, INSPIRE, a		-			
Mod	ule 2: Contemporary Issues in Geoinformatics					
	Emerging trends and scope of Geoinformat Geoinformatics, Information Technology standardization: Data standards, data quality design methodology, design and implement	and y, Sca	Sens le issu	sor t es in	echno RS an	logy. Dat nd GIS. GIS
	institutional issues.	а•				
IVIOD	ule 3: Recent advancements in Geoinformatics					
	Enterprise Geographic Information Sy implementation and its applications. GPS da analysis. Data integration in GIS: Soci application of socio-economic and environic criteria analysis. GIS based decision so applications.	o-econ nental	nomic data,	mport GIS, funda	integ menta	n geospatia gration and lls of multi
Mod	ule 4: Interpolation & Digital Elevation Models	:				
	Sampling theory: Geographic data sampling		ds Inte	erpola	tion: I	ntroductior
	importance, data sources for interpolation,			-		
	interpolation	• 1		•	,	
Book	/Resources:					
i.	Geoinformatics: Data Model and Data Mi Oscherwitz.	ning	by W	Υ.Τ. F	Fujiwa	ra & D.E
ii.	Principles of Geographic Information Systems and C.D. Lloyd.	by P.A	A. Burr	ough,	R.A.	McDonnel
iii.	Spatial Data Infrastructure: Concepts, Method	-		Appli	catior	ns by Ian C
	Harvey.*Other resources shall be shared during	z ine c	ourse			

	rse Code: DPG352MJ	L	Τ	Р	S	Credits
Cou	rse Name: Hyperspectral and LiDAR Remote	2	1	1	-	4
	Sensing					
Cou	rse Objectives:					
•	Introduce students to the fundamentals of hyper	spectr	al and	LiDA	AR ren	note sensing
	technologies for earth observation.					
•	Emphasize the principles of hyperspectral imagi	-	d LiD	AR te	chnol	ogy,
	including sensor operations and data acquisition					
•			nd inte	egratio	on of t	hese
	technologies for advanced geospatial application					
•		-			ls for	applying
~	hyperspectral and LiDAR technologies in real-w	vorld s	scenar	ios.		
	rse Outcomes:					
By th	he end of the course, students will be able to:					
•	Differentiate between hyperspectral and multis	pectra	l imag	ging a	and un	derstand the
	principles of hyperspectral remote sensing.					
•	F	, and	type	s, 1no	cluding	g terrestrial
	airborne, and bathymetric LiDAR systems.		1	1.1.15	4.0.1	
•		-		L1D	AR da	ita, including
	noise reduction and dimensionality reduction tec			• .•		
•	Integrate hyperspectral and LiDAR data for geo	ospatia	al appl	icatio	ons, su	ch as terrai
_	analysis and environmental monitoring.	4	1	.1.1 .	1 11	
•	Apply hyperspectral and LiDAR technologies observation.	to re	eal-wo	oria c	nallen	ges in earth
Mad						
wiou	ule 1: Fundamentals of Hyperspectral Imaging Concepts and significance: hyperspectral	VC	multic	nactre	jl∙ D	rinciples o
	hyperspectral remote sensing; Sensors and			-		-
	collection; Spectral signatures and their inte					
	Airborne and space borne hyperspectral sensors					
	Sensor specifications and data acquisition.	11,11	(10, 11	ypen	011, 1 1	
Mod	ule 2: LiDAR Remote Sensing					
	Principles of LiDAR technology (time-of-fligh	nt and	wave	eform	LiDA	AR): LiDAF
	system components: laser, GPS, IMU, and sca					
	airborne, satellite LiDAR systems, Bathymetric					
Unit	3: Hyperspectral Data Acquisition and Pre-pro	-				
	Sensor calibration; Radiometric, geometric, a	nd at	mosph	eric	correc	tions; Nois
	reduction techniques: de-striping and radion	netric	corre	ection	s; Di	mensionalit
	reduction methods: PCA, MNF, and band			• 1	perspe	ctral Imag
	Classification; Applications of Hyperspectral Re		Sensi	ng		
Unit	4: LiDAR Data Acquisition and Pre-processing					
	LiDAR point cloud generation and character				-	
	filtering, noise removal, and alignment; Integr	ation	of Hy	persp	ectral	and LiDAF
	Data; Applications of LiDAR in earth.					
	x/Resources					
i.	Hyperspectral Remote Sensing and Spectral Si Thenkabail.	-		olicati	ions"	by Prasad S
ii.	LiDAR Remote Sensing and Applications" by Y					
iii.	Remote Sensing and Image Interpretation" by	Thoma	as M.	Lilles	and a	nd Ralph W
	Kiefer.					

Year-4: Speciality and Research

Course Code	Course Title	Category		Hou	rs/We	eek Credits	
			L	Т	Р	S	
DPG400MJ	Spatial Data Infrastructure	Major	1	1	1	1	4
DPG401MJ	Big Data Analytics in Geoinformatics	Major	2	1	1	-	4
DPG402MJ	AI/ML Applications in Geoinformatics	Major	2	1	1	-	4
Minor-7	Course offered by allied Departments	Minor					4
	Research Ethics & Methodology	Research					4
		Ethics &					
		Methodolo					
		gy					
	Total Cred	lits: 20					

Annexure-I

	1	<u> </u>	-		
Course Code: DPG400MJ	L	T	P	Ŝ	Credits
Course Name: Advanced Spatial Data Infrastructure	2	1	1	0	4
Course Objectives:					
• To understand the concept of Spatial Data Infra	astruc	ture (S	SDI)	and its	importance
in spatial data management.					
• To explore technologies and standards used for b		0			0
• To introduce tools and techniques for data sharir	ıg, int	eroper	rabilit	y, and	analysis.
Course Outcomes:					
By the end of the course, students will be able to:					
Understand the fundamental concepts and comp					
Apply metadata standards and interoperability pr					
• Use cloud computing and open-source tools for				•	
Develop mechanisms for spatial data sharing and	l man	ageme	ent.		
Course Contents:					
Module 1: Introduction to SDI					
Definition and components of SDI; History and					
SDI in decision-making and planning; Global a			exan	ples o	of SDI.
Module 2: Tools and Standards for Spatial Data Inte	0				
Metadata and its importance in SDI; Standar				-	• • •
ISO); Cloud and distributed computing in	SDI;	Oper	n-sour	ce to	ols for SDI
development.					
Module 3: Spatial Data Sharing and Collaboration					
Importance of data sharing in SDI; Mechan					
services, and portals; Policies and governance	in SD	I impl	emen	tation.	
Module 4: Applications of SDI			. 1	• ,	
Urban planning, disaster management, and					•
SDI in smart cities; National and global SDI	frame	eworks	s (e.g.	, NSD	I, INSPIRE,
GEOSS).					
Book/Resources	1	D1 /	. т.		Medal E
i. Geographic Information Systems and Science'		raul A	ч. L0	ngiey,	Michael F.
Goodchild, David J. Maguire, and David W. Rhi		d Duc -	4:00-1	1T-	n Massan
ii. Spatial Data Infrastructure: Concepts, Cases, and					
iii. Cloud Computing for Geospatial Big Dat	a Al	iarytic	S D	y Hit	nansu Das,
Chittaranjan Pradhan, and Nilanjan Dey					

Course Code: DPG401MJ	L	Т	Р	S	Credits
Course Name: Big Data Analytics in Geoinformatics	2	1	1	Х	4
Course Objectives:					
• Introduce the principles, tools, and technologie	s for	manag	ging a	and a	nalyzing large
geospatial datasets using Big Data analytics.					
• Equip students with skills to process spatial	data	using	platf	orms	like Hadoop,
Apache Spark, and NoSQL databases.					
• Apply Big Data techniques to real-world ap	-	ions s	uch a	as ur	ban planning,
environmental monitoring, and disaster managen					
• Explore emerging trends in cloud computing	g, ma	chine	learn	ing,	and real-time
geospatial analytics.					
Course Outcomes:					
By the end of the course, students will be able to:					
• Understand the fundamentals of Big Data and its	-		-		
• Be proficient in using Big Data tools and p	latfor	ms (e	.g., H	Iadoo	p, Spark) for
geospatial data management.					
• Apply Big Data techniques to analyze large-s	cale g	geospa	tial d	latase	ts for various
applications.			ara		
• Develop skills in integrating and visualizing Bi	g Dat	a with	GIS	and r	emote sensing
tools. Module 1: Introduction to Big Data in Geoinformatic					
variety, veracity, and value). Geospatial Big including satellite imagery, GPS data, social in Data Technologies, Introduction to Big Da Spark, and NoSQL databases for geospatial d Module 2: Tools and Platforms for Geospatial Big Da Hadoop Ecosystem: Understanding Hado MapReduce, YARN); Apache Spark: Introd processing and analysis; NoSQL Databases, MongoDB and Cassandra for storing and of Data Storaget Storing large costs	media ata pl ata sto ata oop a luction worki jueryi	data, a atform orage a and it n to S ng wit ng geo	and se is like ind pr s co park t th No pospati	ensor e Hao ocess mpon for di SQL al da	networks; Big doop, Apache ing. nents (HDFS istributed data databases like ta; Geospatia
Data Storage: Storing large-scale geospatial	data	using	Torm	ats 11	ke Geojson,
HDF5, and NetCDF. Module 3: Data Processing and Analysis Techniques					
Data Pre-processing and Analysis rectinques Data Pre-processing: Techniques for cleaning Data (data fusion, normalization, and samp Combining remote sensing data, GIS data, an Learning and Big Data: Applying machine Data (clustering, classification, and regress discovering patterns, trends, and anomalies in Module 4: Applications of Big Data Analytics in Geo	pling) d othe learn ion); large spatia	; Geos er spati ing al Data geosp al Scie	spatia al dat gorith Minin atial o nces Mo	l Dat a sou ms to ng: T datase	a Integration rces; Machine o analyze Big echniques for ets. ing; Disaster
Urban Planning and Smart Cities; En Management; Social Media and Geospatia		alysis	; Rea	ıl-Tin	ne Geospatial
Urban Planning and Smart Cities; En Management; Social Media and Geospatia Analytics.		alysis	; Rea	al-Tin	ne Geospatia
Urban Planning and Smart Cities; En Management; Social Media and Geospatia	al Ar	-			-

	e Code: DPG402MJ	L	Τ	P	S	Credits
	e Name: AI/ML Applications in Geoinformatics	2	1	1	Х	4
Cours	e Objectives:					
٠	Introduce students to the fundamentals of AI a analysis.	nd m	achine	e leari	ning i	n geospatia
٠	Teach application of machine learning tech detection, and regression in geospatial contexts.	inique	es for	clas	sificat	tion, objec
•	Explore AI-driven solutions for environmental	mon	itorin	, urb	on nl	onning on
•	disaster management.	mon	nonnş	g, urt	an pi	anning, an
•	Cover emerging trends in deep learning for remo	nte se	nsina	and A	I inte	oration wit
•	cloud platforms for geospatial data analysis.		lising			
Cours	e Outcomes:					
	end of the course, students will be able to:					
•	Understand the basic concepts and algorithms of	f AI a	nd M	Linc	luding	, supervise
	and unsupervised learning.			_,	1001112	Supervise
•	Apply machine learning algorithms to geospa	atial o	lata f	or ta	sks si	ich as lan
	use/land cover (LULC) classification and feature					
٠	Gain hands-on experience using AI/ML techniq	ues fo	or env	ironm	nental	monitoring
	urban planning, and disaster management.					-
٠	Explore emerging trends in AI, including deep	lear	ning f	for rea	mote	sensing an
	integration with cloud platforms for large-scale g	eospa	itial ar	nalysis	8.	
Modu	le 1: Introduction to AI and Machine Learning					
	Fundamentals of AI/ML: Concepts, definitions	, and	types	of lea	rning	(supervised
	unsupervised); Machine Learning Algorithms					
	Trees, and K-means clustering; Geospatial Da	ata Pr	ocessi	ng: P	repari	ng and pre
	processing geospatial datasets for analysis.					
Unit I	I: Machine Learning for Geospatial Analysis			0		
	Classification Techniques: Supervised clas					
	Unsupervised classification for clustering geo					
	Identifying features such as buildings, roads, a Regression Models: Predicting spatial trends an			on m	satem	ne magery
Unit T	II: Applications of AI/ML in Geoinformatics	iu pai	lerns.			
	Environmental Monitoring: Forest health ass	essm	ent ar	nd hid	mass	estimation
	Flood and drought prediction; Urban Planning:					
	sprawl prediction, and smart city development			0		•
	susceptibility mapping; Damage assessment usi				-	. Dundonia
Unit I	V: Emerging Trends and Case Studies					
	Deep Learning for Remote Sensing: Introd	ductio	n to	Conv	volutio	onal Neura
	Networks (CNN) for image classification; Integ					
	Google Earth Engine, AWS SageMaker, and o	ther t	ools; l	Real-v	world	application
	of AI/ML for solving spatial problems.					
	Future Directions: AI in autonomous map	ping,	clima	ate ri	sk ar	alysis, an
	geospatial IoT.					
Book/	Resources					
i.	OLi, X., & Liu, Y. (2017). Machine Learn	ing f	for G	eospa	tial A	pplication
	Springer.					
ii.	Zhang, Y., & Wang, L. (2021). Artificial Intell	igence	e in G	eospa	tial A	pplications
	Theory and Practice. CRC Press.					