

Credit Distribution Framework for the Four-Year Undergraduate Program

	Description	Credits
(A)	Range of Credits: A student requires to earn 160 to 170 credits to be eligible to	
	get Under Graduate Degree in Engineering.	167
(B)	Credits offered during 1st Year (two semesters)	38
(C)	Total Credits Required from Semester III and Onwards (A-B)	129
(D)	Open Elective Credits to be Earned	08
(E)	Credits for Pre-Project + Project + Seminar + Internship	16
(F)	Credits to be Offered Under IKS (Mandatory/Core)	02
(G)	Credits to be Offered under PCC and PEC (C-D-E-F)	103
(H)	Credits to be Offered Under PCC including Labs/Practicals	85
(I)	Credits to be Offered Under PEC (G-H)	18

*NOTE: In accordance with AICTE guidelines permitting minor variations in credit distribution, , the regular Undergraduate Degree program will be structured to comprise a total of 167 credits with the following breakup:

Semester Wise Credit Structure and Distribution

							Te and Dist		I	
Semester	PCC	PEC	ESC	BSC	HSMC	MOPEC	PR + INT	IKS	MNCC-	Total
						CIENCE	(Including Seminar)	(Indian Knowledge	AU	Credits
					10°	ANCE ME IN L.	25	System)		
1 st	0	0	03	12	03/3	0	The Co	0	2 Courses	18
2 nd	0	0	16	04	\(\int_{\infty}\)\(\int_{\infty}\)\(\int_{\infty}\)	.0	0	0	1 Course	20
3 rd	17	03	0	0	$\frac{3}{2}$	0	05	0	0	20
4 th	17	03	0	0	$\bar{z} \mid 0$	2	00	01	0	23
5 th	18	03	0	0	$\frac{1}{2}$ \0	2	0	0	0	23
6 th	17	03	0	0	20	2	0	01	0	23
7 th	13	03	0	0	0	رى . 2	04	0	0	22
8 th	03	03	0	0	0	0	12	0	0	18
Total	85	18	19	16	03	08	16	02	0	167
Credits						IUSI				

SEMESTER 1ST

a .v	Course		Course	Pe	r W	/ee	k	Cradita
S. No	Code	Course Title	Category	L	Т	P	S	Credits
1	MTH115C	Calculus for Engineers	BSC	3	1	0	4	
2	PHY102C	Engineering Physics	BSC	3	0	2	0	4
3	CHM102C	Engineering Chemistry	BSC	3	0	2	0	4
4	Ι (ΊνλοιΔ	Introduction to Environmental Science and Engineering	MNCC-AU	2 0 0 1				0
5	MEC102C	Engineering Visualisation	ESC	1	0	4	0	3
6	ENG107F	Technical Communication	HSMC	2	0	2	0	3
7	MEC104A	Engineering Perspectives	MNCC-AU	1 0 0 1				0
Total Credits							18	

(Tog)

Hharfm

Prof. Sharad Ei Kumar Jain Ahn

Er. Iftikhar Ahmad Kakroo

Dr. Khalid Muzammil Gani

Er. Mir Aijaz Ahmad

Dr. Shujaat Hussain

Er. Mohd. Iqbal Mirza

Er. Misba Gul Er. Mohamma Dilawar Bhat

Er. Mohammad Er. Mehnaza Dilawar Bhat Akhter

SEMESTER 2ND

S. No	Course	Course Title	Course Category	F	Per V	Credits		
3. 110	Code	course ritte	Category	L	T	P	S	
1	MTH155C	Linear Algebra and Differential Equations	BSC	3	1	0	0	4
2	CIV152C	Engineering Mechanics	ESC	3	0	0	0	3
3	ELE150C	Basic Electrical Engineering	ESC	3	0	2	0	4
4	CSE160F	Programming for Problem Solving	ESC	3	0	2	0	4
5	ECE151C	Basic Electronic Devices	ESC	3	0	0	0	3
6	MEC152C	Product Realisation through Manufacturing	ESC	0	0	2	1	2
7	SS01A	Ethics and Social Responsibilities	MNCC-AU	1	0	0	0	0
		Total Credits						20

		COURSE STRUCTURE SI	EMESTER I	II				
S.	Course	Course Title SCIENCE C	Course	Credits	Contact	Pe	er W	eek
No	Code	OF BOVANCE ME IN KNOW	Category		Hours	L	T	P
1.	CIV-201-C	Structural Analysis-1	PCC	3	45	2	1	0
2.	CIV-202-C	Surveying-I	PCC	3	45	2	1	0
3.	CIV-203-C	Fluid Mechanics-E	PCC	3	45	2	1	0
4.	CIV-204-C	Building Materials & Construction	45	2	1	0		
5.	CIV-205-C	Applied Statistics and Mathematics						
		for Civil Engineering						
6.	CIV-206-E	Construction Technology	onstruction Technology					
	CIV-207-E	Introduction to Geotechnical	roduction to Geotechnical					
		Engineering						
	CIV-208-E	Introduction to Green Technology						
	CIV-209-E	Introduction to Water Supply and	PEC	3	45	2	1	0
		Sanitation						
	CIV-210-E	Introduction to Pavement						
		Materials						
	CIV-211-E	Soft Skill for Civil Engineers						
7.	CIV-216-C	Structure Lab-I	1	30	0	0	2	
8.	CIV-217-C	Surveying Lab-I	1	30	0	0	2	
9.	CIV-218-C	Fluid Mechanics Lab-I	1	30	0	0	2	
			20					
10.	CIV-246-C	Introduction to Sustainability	Optional	3	45	3	0	0

Tug

Mirza

	OURSE STRUCTURE SEMESTER IV										
S.	Course	Course Title	Course	Credits	Contact	Pe	r W	eek			
No	Code		Category		Hours	L	T	P			
1.	CIV-250-C	Structural Analysis-II	PCC	3	45	2	1	0			
2.	CIV-251-C	Surveying- II	PCC	3	45	2	1	0			
3.	CIV-252-C	Fluid Mechanics-II									
4.	CIV-253-C	Civil Engineering Construction & Architectural Drawing									
5.	CIV-254-C	Sustainable Practices in Indian Knowledge System	ainable Practices in Indian IKS 1 15 1 0								
6.	CIV-255-E	Construction Management	nstruction Management								
	CIV-256-E	Engineering Geology and Seismology									
	CIV-257-E	Environmental Pollution and									
		Control									
	CIV-258-E	Fluid Mechanics Applications in Engineering	uid Mechanics Applications								
	CIV-259-E	Road Safety and Management	15/								
	CIV-260-E	Entrepreneurship & Start-ups in Civil Engineering) OGY-X								
7.	CIV-266-C	Structure Lab-II	PCC/	1	30	0	0	2			
8.	CIV-267-C	Surveying Lab-II	PCC	1	30	0	0	2			
9.	CIV-268-C	Fluid Mechanics Lab-II	PCC	1	30	0	0	2			
10.	CIV-269-C	Computer Based Drafting Lab	PCC	1	30	0	0	2			
11.	CIV-270-C	Survey Camp	Survey Camp PCC 1 30 0 (
12.	MOPEC	Open Elective	30	*	*	*					
		Total Credits		23							
12.	CIV-296-C	Sustainable Infrastructure Design & Planning	Optional	3	45	3	0	0			

Hussain

Hharfm

Dr. Khalid Muzammil Gani

		COURSE STRUCTURE	SEMESTER	. V					
S.	Course	Course Title	Course	Credits	Contact	Pe	r We	eek	
No	Code		Category		Hours	L	T	P	
1.	CIV-301-C	Design Of Concrete Structures-I	PCC	3	45	2	1	0	
2.	CIV-302-C	Geotechnical Engineering-I	PCC	3	45	2	1	0	
3.	CIV-303-C	Water Supply Engineering							
4.	CIV-304-C	Concrete Technology	2	1	0				
5.	CIV-305-C	Quantity Survey & Cost	uantity Survey & Cost PCC 3 45						
		Estimation							
6.	CIV-306-E	Design Software							
	CIV-307-E	Geotechnical Applications in							
		Construction							
	CIV-308-E	Solid Waste Management	PEC	3	45	2	1	0	
	CIV-309-E	Groundwater Engineering							
	CIV-310-E	Sustainable Transportation NCE	8						
		Infrastructure ON ANDWANCE ME IN AN	ON FC						
	CIV-311-E	Waste Management	8 2						
7.	CIV-316-C	Geotechnical Engineering Lab-I	PCC	1	30	0	0	2	
8.	CIV-317-C	Environmental Engineering	PCC	1	30	0	0	2	
		Lab	12/						
9.	CIV-318-C	Concrete Technology Lab	1	30	0	0	2		
10.	MOPEC	Open Elective	MOPEC	2	30	*	*	*	
		Total Credits	2005	23 3					
11.	CIV-346-C	Sustainable Materials and	stainable Materials and Optional					0	
		Construction							

Mirza

Hharfm Er. Mehnaza

		COURSE STRUCTUR	E SEMESTEF	R VI					
S.	Course	Course Title	Course	Credits	Contact	Per	·We	ek	
No	Code		Category		Hours	L	T	P	
1.	CIV-350-C	Design Of Steel Structures	PCC	3	45	2	1	0	
2.	CIV-351-C	Geotechnical Engineering-II	PCC	3	45	2	1	0	
3.	CIV-352-C	Transportation Engineering - I	ortation Engineering - PCC 3 45						
4.	CIV-353-C	Engineering Hydrology	PCC	3	45	2	1	0	
5.	CIV-354-C	Structural Analysis-III							
6.	CIV-355-C	Traditional Wisdom for Earthquake Resistant & Disaster Resilient Designing.	e Resistant & IKS 1					0	
7.	CIV-356-E CIV-357-E CIV-358-E CIV-359-E CIV-360-E	Advance Structural Analysis Rock Mechanics & Tunnelling Technology Climate Change: Impacts, Adaptation, and Resilience in Civil Engineering Rural and Urban Sanitation Transport Innovations and Industrial Progress Programming for Engineers	saster Resilient Designing. vance Structural Analysis ck Mechanics & Tunnelling chnology mate Change: Impacts, aptation, and Resilience in vil Engineering ral and Urban Sanitation ansport Innovations and						
8.	CIV-366-C	Geotechnical Lab-II	PCC	1	30	0	0	2	
9.	CIV-367-C	Transportation Lab-I	PCC	1	30	0	0	2	
10.	MOPEC	Open Elective	MOPEC	2	30	*	*	*	
		Total Credits		23					
11.	CIV-396-C	Waste Management	Optional	3	45	3	0	0	

		COURSE STRUCTURE S	EMESTER VI	I				
S.	Course	Course Title	Course	Credits	Contac	Pe	r We	ek
No	Code		Category		t Hours	L	T	P
1.	CIV-401-C	Design of Concrete Structures- II	PCC	3	45	2	1	0
2.	CIV-402-C	Irrigation & Hydraulic	PCC	3	45	2	1	0
		Structures						
3.	CIV-403-C	Transportation Engineering-II	PCC	3	45	2	1	0
4.	CIV-404-C	Waste Water Engineering	PCC	3	45	2	1	0
5.	CIV-405-E	Design of Bridge Structures						
	CIV-406-E	Geo-Environmental Engineering						
	CIV-407-E	Environment Impact						
		Assessment & Audit						
	CIV-408-E	Hydropower Engineering	PEC	3	45	2	1	0
	CIV-409-E	Transportation Planning And						
		Economics SCHERE OF SCHERE IN AN	70					
	CIV-410-E	AI & Machine Learning in Civil						
		Engineering (8)	101					
6.	CIV-416-C	Seminar	PR	1	30	0	0	2
7.	CIV-417-C	Transportation Lab-II	PCC	1	30	0	0	2
8.	CIV-418-C	Pre -Project	PR	2	60	0	0	4
9.	CIV-419-C	Industrial Training	INT	1	30	0	0	2
10.	MOPEC	Open Elective ESTD.	MOPEC	2	30-60	*	*	*
		Total Credits IUST		22				
11.	CIV-446-C	Geo-Environmental Engineering	Optional	3	45	3	0	0

Mirza

Hharfm

	COURSE STRUCTURE SEMESTER VIII								
S.	Course	Course Title	Course	Credits	Contact	Pe	r W	eek	
No	Code		Category		Hours	L	T	P	
1.	CIV-450-C	Earthquake Resistant Design	2	1	0				
2.	CIV-451-E	Pre-Stressed Concrete							
	CIV-452-E	Ground Improvement							
		Techniques	ıniques						
	CIV-453-E	Sustainable Environmental	ole Environmental						
		Practices and Quality Control	actices and Quality Control PEC 3 45 2						
	CIV-454-E	Industrial waste water						0	
		treatment							
	CIV-455-E	Design and Maintenance Roads							
	CIV-456-E	Contracts & Legal Aspects in							
		Civil Engineering							
3.	CIV-466-C	Project	PR	12	360	0	0	24	
		Total Credits	E 72	18					
4.	CIV-496-C	Capstone Project	Optional	3	90	0	0	6	

Note: Out of the Six PEC (Professional Elective Courses) for each semester, the actual number to be floated will be decided session-wise in accordance to the availability of faculty strength and workload during that particular academic session.

IUST

(Tay)

Hharfm

Er. Iftikhar l Ahmad Kakroo Mu

Dr. Khalid Muzammil Gani Er. Mir Aijaz Ahmad Dr. Shujaat Hussain Er. Mohd. Iqbal Mirza Er. Misba Gul

Er. Mohammad Dilawar Bhat Er. Mehnaza Akhter

ANNEXURE-I

DETAILED SYLLABUS

B.TECH CIVIL ENGINEERING

(CORE COURSES)

(Batch 2024 & Onwards)

PROGRAMME OBJECTIVES AND OUTCOMES

B.Tech Civil Engineering (Regular Programme)

Programme Objectives (POBs)

- 1. To establish a robust foundation in mathematical principles, scientific concepts, and engineering fundamentals enabling graduates to formulate solutions to complex civil engineering challenges.
- 2. To develop proficiency in the design, planning, and execution of sustainable infrastructure systems that demonstrate resilience to contemporary environmental and societal challenges.
- 3. To instil a profound awareness of professional ethics, environmental stewardship, and societal responsibilities inherent in the practice of civil engineering.
- 4. To nurture collaborative competencies for effective functioning within multidisciplinary teams and to cultivate sophisticated communication skills for engagement with diverse stakeholders.
- 5. To foster a culture of innovation, intellectual curiosity, and commitment to lifelong scholarly pursuit necessary for addressing emerging engineering paradigms.

Programme Outcomes (POs)

- 1. Apply engineering knowledge to analyze and solve complex civil engineering problems.
- 2. Design civil engineering systems considering environmental, societal, and economic constraints.
- 3. Conduct experiments and interpret data related to geotechnical, transportation, and structural systems.
- 4. Employ modern tools and digital techniques such as AutoCAD, GIS, and Total Station in project
- 5. Demonstrate ethical, managerial, and entrepreneurial skills relevant to the civil engineering profession.

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)
SEMESTER		3rd			
COURSE TITLE	Ξ	Struc	tural A	nalysis	- I
COURSE CODE	1	CIV-2	01-C		
COURSE CATE	GORY	Profes	ssional	Core Co	urse (PCC)
			CRED	DITS AN	D CONTACT HOURS
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3	2	1	0	0	45

	COURSE OBJECTIVES							
1.	This course aims to introduce the concepts of engineering mechanics of materials and							
	the behaviour of the materials and structures under applied loads with respect to civil							
	engineering design and analysis							

COURSE CONTENT						
Units	Description	Cont. Hours				
1.	Basic concepts of structural analysis:- Structure, structural engineering, Types of loads (point, uniformly distributed and varying), Types of supports and support reactions, free body diagrams, Equations of equilibrium, Principle of Superposition, Axial force, Bending moment, and Shear force in determinate beams (Simply supported beams, cantilever, and overhanging beams) and diagram of shear force and bending moment.	10				
2.	Symmetric Beam Bending : Simple theory of bending, Bending and shear stress for regular sections, shear center.	9				
3.	Deflection of statically determinate beams : Slope and deflection of beams by integration, area-moment method and conjugate beam method.	10				
4.	Compound stresses : - Normal and tangential stresses, Principal stresses and strains, Principal planes, Mohr's circle of stress, Evaluation by analytical and graphical method.	8				
5.	Columns : Fundamentals, column buckling theory, Euler's load for columns with different end conditions, limitations of Euler's theory, Problems with eccentric load.	8				

....

	COURSE OUTCOMES					
CO 1.	Explain climate change mechanisms and identify civil engineering sectors affected.					
CO 2.	Evaluate climate-related risks to different infrastructure systems and materials.					
CO 3.	Propose suitable adaptation techniques for climate-resilient infrastructure projects.					
CO 4.	Assess and recommend eco-friendly materials and green infrastructure for civil					
	engineering use.					
CO 5.	Interpret climate change-related policies, design standards, and future trends in the					
	field.					

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	Mechanics of Materials	Beer, P. F., Johnston (Jr.), E. R.,						
		Dewolf, J. T., and Mazurek, D. F						
2.	Mechanics of Materials	Hibbeler, R. C						
3.	Mechanics of Structures Vol. I (Strength of Materials	Shah, H. J., and Junnarkar, S. B						
4.	Fundamentals of Solid Mechanics: A Treatise on	Gambhir, M. L.						
	Strength of Materials							
5.	Engineering Mechanics of Solids	Popov, E. P						
6.	Mechanics of Materials	Gere, J. M., and Goodno, B. J.						
7.	Mechanics of Materials	Craig (Jr.), R. R.,						

PROGRAMME	B.Tecl	n Civil I	Engineer	ring (Regular)			
SEMESTER		3 rd					
COURSE TITLE		Surve	ying -	I			
COURSE CODE		CIV-2	02-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
	CREDITS AND CONTACT HOURS						
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3	2	1	0	0	45		

	COURSE OBJECTIVES						
1.	Introduce students to the basic concepts, principles, and terminology of surveying,						
	including different types of surveys (land, construction, topographic, geodetic) and						
	their applications.						
2.	Teach students various measurement methods, such as distance measurement						
	(electronic and traditional methods), levelling, angle measurement, and traverse						
	measurements						
3.	Enable students to identify and quantify different sources of errors in survey						
	measurements, including instrumental, environmental, and observational errors						

	COURSE CONTENT					
Units	Description	Cont. Hours				
1.	Introduction: Definition- Classifications - Basic Principles-	03				
2.	Equipment and accessories for ranging and chaining – Methods of	10				
	ranging – well conditioned triangles – Errors in linear measurement					
	and their corrections – Obstacles.					
3.	Compass - Basic principles - Types - Bearing - Systems and	10				
	conversions- Sources of errors - Local attraction - Magnetic					
	declination-Dip - Adjustment of closing error – applications -					
4.	Plane table and its accessories - Merits and demerits - Radiation -	10				
	Intersection - Resection					
5.	Level line - Horizontal line - Datum - Benchmarks -Levels and staves	12				
	- Methods of levelling - Fly levelling - Check levelling - Procedure in					
	levelling Curvature and refraction – Sources of Errors in levelling-					
	Types of instruments					

	COURSE OUTCOMES						
CO 1.	Students will be able to apply geometric principles and mathematical concepts to solve						
	real-world surveying problems, such as land area calculation and boundary						
	determination.						
CO 2.	Graduates will demonstrate proficiency in employing various surveying techniques to						
	accurately measure distances, angles, and elevations in a surveying context.						
CO 3.	Graduates will be capable of interpreting survey data and presenting findings through						
	maps, charts, and reports that effectively communicate information to various						
	stakeholders, such as land developers, engineers, and government agencies.						
CO 4.	Students will be able to apply geometric principles and mathematical concepts to solve						
	real-world surveying problems, such as land area calculation and boundary						
	determination.						
CO 5.	Graduates will demonstrate proficiency in employing various surveying techniques to						
	accurately measure distances, angles, and elevations in a surveying context.						

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	Surveying (volume I)	Dr. K. R. Arora						
2.	Surveying (volume I)	S. K. Duggal						
3.	A Text Book of Surveying	C L Kochher						
4.	Surveying and levelling	P. B. Shahani						

IUST 2000

PROGRAMME	B.Tecl	n Civil I	Engineer	ring (Regular)		
SEMESTER		3rd				
COURSE TITLE		Fluid	Mecha	nics-I		
COURSE CODE		CIV-2	03-C			
COURSE CATEGORY		Professional Core Course (PCC)				
	CREDITS AND CONTACT HOURS					
CREDITS L T P S			P	S	TOTAL NO. OF CONTACT HOURS	
3 2 1 0 0			0	0	45	

	COURSE OBJECTIVES					
1.	To develop the understanding of basic principles of mechanics of fluids at rest and in					
	motion and their applications in solving the real engineering problems					
2.	To imbibe basic laws and equations used for analysis of static and dynamic fluids.					
3.	To develop understanding about hydrostatic law, principle of buoyancy and stability					
	of a floating body and application of mass, momentum and energy equation in fluid					
	flow.					
4.	To inculcate the importance of fluid flow measurement and its applications in Industries.					
5.	To be able to carry out dimensional analysis for various physical phenomenon occurring					
	in nature. $\left(\frac{8}{6}\right)$					

	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	Unit I: Introduction						
	Physical properties of Fluids: Mass density, Viscosity,	7					
	Compressibility, Vapour pressure, Surface tension, Capillarity, Ideal						
	Fluids and Real Fluids; Newtonian and non-Newtonian fluids.						
2.	Unit II: Fluid Statics						
	Pressure Intensity, Pascal's law; Hydrostatic Law; manometers and	13					
	its types; Hydrostatic forces on surface, Total pressure, Centre of						
	pressure; Buoyancy, Centre of buoyancy, Stability of immersed and						
	floating bodies, Metacentric height and its determination.						
3.	Unit III: Fluid Kinematics						
	Steady and unsteady; Uniform and non-uniform; laminar and	7					
	turbulent flows; one-, two- and three-dimensional flows;						
	Conservation of mass; Continuity equation; velocity field and						
	acceleration; Streamlines, Streak lines and path lines and flow net;						
	Elementary explanation of stream function and velocity potential;						
	rotation, circulation and vorticity.						

....

4.	Unit IV: Fluid Dynamics Equations of motion, Euler's equation of motion along a streamline and Bernoulli's equation; Bernoulli's equation for real flow; Applications of Bernoulli's equation; flow measurement through Venturimeter, orifice-meter, Pitot tube; Orifices & mouth-pieces; Notches and weirs, Classification of notches and weirs, Nappe, Crest/Sill.	11
5.	Unit V: Dimensional Analysis Dimensional homogeneity, Primary and Secondary dimensions, Rayleigh method & Buckingham's Π-theorem; Important Dimensionless numbers (Reynold's number, Froude's number, Euler's number); Kinematic and Dynamic similarity; Model Analysis and similitude.	7

	COURSE OUTCOMES						
CO 1.	To analyze various Physical properties of fluids						
CO 2.	Analyze and perform calculations on Pressure Intensity, force on plane and curved						
	surfaces, center of pressure and metacentric height						
CO 3.	Perform calculations for determination of Steady and unsteady, uniform and non						
	uniform, laminar and turbulent flows; one, two and three dimensional flows; Stream						
	lines, Streak lines and path lines.						
CO 4.	. Determine Euler's equation of motion along a streamline and its integration to yield						
	Bernoulli's equation.						
CO 5.	5. To carry out dimensional analysis for a physical phenomenon occurring in nature by						
	using Buckingham's theorem						

	TEXT BOOKS/REFERENCES									
S. No	Book/Text Title Author									
1.	Fluid Mechanics and Fluid Power Engineering	Kumar, D.S.								
2.	Engineering Fluid Mechanics Garde R.J.									
3.	Fluid Flow in Pipes & Channels Asawa, GL,									
4.	Engineering Fluid Mechanics	Kumar, K.L.								
5.	Introduction to Fluid Mechanics and Fluid Machines	Som, S.K. and Biswas, G.,								

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)
SEMESTER		3rd			
COURSE TITLE		Build	ing Ma	terial &	Construction
COURSE CODE		CIV-2	04-C		
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)
	CREDITS AND CONTACT HOURS				
CREDITS L T P S TOTAL NO. OF CONTACT HOURS		TOTAL NO. OF CONTACT HOURS			
3	2	1 0 0 45			

	COURSE OBJECTIVES								
1.	To aid practicing engineers in materials selection and design by understanding the								
	interplay among structure, processing, properties, and performance.								
2.	Introduction about basic building units and their suitability.								
3.	To assess and evaluate the differences in material composition.								
4.	To provides a broad overview of the field and serves.								
5.	To know the pattern of lying of building units.								

	COLDCE COMMENT	
	COURSE CONTENT	1
Units	Description	Cont. Hours
1.	Introduction to building materials.	
	Role of material in construction. Types of materials used in	
	building construction.	
	Lime: Classification & Types	10
	Cement : Classification/types and testing of cement.	
	Fly Ash: Classification and Uses of Fly Ash	
	Mortar: Classifications/types and their use.	
	Timber : Classifications/types, and seasoning of timber.	
	Steel: Classifications and their tests	
2.	Stones, Bricks and Concrete Blocks	10
	Stone as building material: Criteria for selecting stones, Tests of	
	stones, Deterioration and Preservation of stonework.	
	Bricks as building material: Classification of bricks, Special and	
	advanced bricks, Defects in bricks, Tests on bricks as Per Indian	
	standard.	
	Concrete Blocks: Types of concrete blocks advantages and	
	disadvantages of concrete blocks.	
3.	Properties of Building materials.	10
	Factors affecting properties of building materials, the importance of	
	studying properties of building materials, introducing various	

D.... 1

	properties of building materials e.g., structural properties, thermal,	
	fire-related properties, and acoustic properties.	
4.	Introduction of Building Practices and Building Elements.	10
	Building codes and their objectives. Load-bearing structures and	
	framed structures its suitability and importance. Types of loads.	
	Introduction to building elements and Their Types.	
	Foundation, Plinth, Floors, DPC, Walls, Slab, Stairs, Columns, Beams,	
	Lintel, Roofs, Plaster, Doors, Windows, and Ventilators.	
5.	Masonry Construction:	5
	Definition and terms used in masonry. Brick masonry,	
	characteristics, and requirements of good brick masonry, Bonds in	
	brickwork.	

	COURSE OUTCOMES						
CO 1.	Learner should differentiate the basic materials used in building construction.						
CO 2.	Learner should analyze the requirements of modern material, our traditional one.						
CO 3.	Learner should know building elements and their construction.						

	TEXT BOOKS/REFERENCES								
S. No	Book/Text Title	Author							
1.	Building materials	Parbin Singh.							
2.	Building materials and construction	Gurcharan Singh							
3.	Building materials and construction	Ragawala.							
4.	Building construction ESTD. 2005	Sushil Kumar.							

IUST

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		3rd				
COURSE TITLE		Appli	ed Sta	tistics a	nd Mathematics for Civil Engineering	
COURSE CODE		CIV-2	05-C			
COURSE CATEGORY		Basic	Science	Course	(BSC)	
	CREDITS AND CONTACT HOURS					
CREDITS	L	T P S TOTAL NO. OF CONTACT HOURS				
2	1	1	0	0	30	

	COURSE OBJECTIVES							
1.	To introduce the fundamental concepts of descriptive statistics and data visualization							
	techniques to effectively summarize and interpret civil engineering-related datasets.							
2.	To provide a foundation in probability theory and probability distributions for							
	modeling uncertainty in civil engineering scenarios.							
3.	To develop understanding of correlation and regression techniques for identifying							
	relationships and making predictions from engineering data.							

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	Descriptive Statistics and Data Analysis	
	Introduction to types of data: qualitative and quantitative.	
	Classification and tabulation of civil engineering data.	10
	Graphical representation: histograms, pie charts, frequency polygons.	
	Measures of central tendency: mean, median, mode.	
	Measures of dispersion: range, mean deviation, standard deviation.	
	Applications: General application to summarize and interpret	
	field and experimental data relevant to civil engineering.	
2.	Probability Concepts and Applications	
	Basic probability concepts: sample space, events, rules of probability. Introduction to probability distributions: Binomial, Poisson and	10
	Normal.	
	Applications: General modelling of uncertainties and risks encountered in civilengineering projects.	
3.	Correlation and Simple Regression	
		10
	Understanding correlation: Pearson's and Spearman's coefficients.	
	Simple linear regression analysis.	
	Least square estimation method for parameter estimation in simple regression.	
	Applications: General use of predictive modelling and trend analysis in civilengineering observations and experiments	

COURSE OUTCOMES

CO 1.	Summarize and interpret civil engineering data using appropriate statistical tools							
	including measures of central tendency, dispersion, and graphical methods.							
CO 2.	Apply probability distributions to model uncertainties and risks commonly							
	encountered in civil engineering design and decision-making.							
CO 3.	Analyze relationships between variables and make data-driven predictions using							
	correlation and regression methods applicable to engineering problems.							
CO 4.	Summarize and interpret civil engineering data using appropriate statistical tools							
	including measures of central tendency, dispersion, and graphical methods.							
CO 5.	Apply probability distributions to model uncertainties and risks commonly							
	encountered in civil engineering design and decision-making.							

	TEXT BOOKS/REFERENCES								
S. No	Book/Text Title	Author							
1.	Probability and Statistics for Engineers and	R. E. Walpole, R. H. Myers et al.							
	Scientists								
2.	Basic Statistics	B. L. Agarwal							
3.	Fundamentals of Mathematical Statistics	S. C. Gupta & V. K. Kapoor							
4.	Applied Statistics and Probability for Engineers	Douglas C. Montgomery, George							
	OF SCIENCE Q	C. Runger							
5.	Fundamentals of Statistics	A. M. Goon, M. K. Gupta, B.							
	(3/0 11, 10)	Dasgupta							

PROGRAMME	B.Tecl	n Civil l	Engineer	ring (Regular)			
SEMESTER		3rd					
COURSE TITLE		Struc	ture La	ıb-I			
COURSE CODE		CIV-2	16-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
	· ·						
			CREI	DITS AN	D CONTACT HOURS		
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS			
1	0	0 2 0 30					

	COURSE OBJECTIVES
1.	To experimentally investigate the deformation and load-carrying behavior of structural
	elements such as beams, trusses, arches, and frames.
2.	To verify classical theorems of structural analysis like Maxwell's theorem and assess
	influence lines in statically determinate structures.
3.	To understand the concept of structural redundancy and elastic coupling in structural
	systems. SCIENCE C

COURSE CONTENT						
Units	Experiments	Cont. Hours				
1.	Deflection of curved beams.	4				
2.	Behavior of Portal Frame under different load combinations.	3				
3.	Deflection of Truss.	3				
4.	Behavior of a cantilever beam under symmetrical and unsymmetrical loading.	4				
5.	Analysis of an elastically coupled beam.	3				
6.	Analysis of a redundant joint.	3				
7.	Analysis of two hinged arches.	3				
8.	Verification of Maxwell's Theorem.	3				
9.	Verification of Horizontal Thrust in a 3-Hinged Arch.	4				

PROGRAMME	B.Tecl	h Civil I	Engineer	ring (Regular)			
SEMESTER		3rd					
COURSE TITLE	2	Surve	ying L	ab-I			
COURSE CODE		CIV-2	17-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
	·						
			CREI	DITS AN	D CONTACT HOURS		
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS			
1	0	0 2 20 30					

	COURSE OBJECTIVES							
1.	To use the basic surveying equipment viz Chain, tape, Compass							
2.	To layout different types of traverses using chain/tape and compass.							
3.	To handle & use Plane table with other accessories.							
4.	To handle & use various types of levelling instruments viz, Dumpy level, Tilting Level							
5.	To prepare L –sections and X-sections showing relative levels of various points							

OF SCIENCE &

	COURSE CONTENT						
Units	Experiments Cont. Ho						
1.	Study of chains and their accessories.	2					
2.	2. Aligning, Ranging, and Chaining. 2						
3.	Chain Traversing.	2					
4.	Compass Traversing.	2					
5.	Plane table surveying: Radiation.						
6.	Plane table surveying: Intersection. 2						
7.	Plane table surveying: Traversing. 2						
8.	Plane table surveying: Resection – Three point problem. 2						
9.	Plane table surveying: Resection – Two point problem. 2						
10.	Study of levels and levelling staff. 2						
11.	. Fly levelling using Dumpy level. 2						
12.	Fly levelling using tilting level.						
13.	Check levelling. 2						
14.	LS and CS.	2					
15.	Contouring.	2					

Page

PROGRAMME	B.Tecl	h Civil I	Engineer	ring (Regular)			
SEMESTER		3rd					
COURSE TITLE	Fluid	Mecha	nics Lab	o-I			
COURSE CODE		CIV-2	18-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
			CREI	DITS AN	D CONTACT HOURS		
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS			
1	0	0 2 0 30					

	COURSE OBJECTIVES
1.	To develop understanding of hydrostatic law, the principle of buoyancy and stability
	of a floating body, and application of mass, momentum, and energy equation in fluid
	flow.
2.	To imbibe basic laws and equations used for the analysis of static and dynamic fluids.
3.	To teach the importance of fluid flow measurement and its applications in Industries
4.	To give fundamental knowledge of fluid, its properties, and behaviour under various
	Conditions of internal and external flows.

	COURSE CONTENT						
Units	Experiments	Cont. Hours					
1.	To determine the metacentric height of a ship model experimentally.	4					
2.	To verify Bernoulli's equation experimentally.	4					
3.	To determine the coefficient of discharge, coefficient of velocity, and coefficient of Contraction of an orifice or a mouthpiece of a given shape.						
4.	To calibrate an orifice meter and to study the variation of coefficient of discharge with Reynold's number.						
5.	To calibrate a Venturimeter and to study the variation of coefficient of discharge with Reynold's Number.						
6.	To calibrate sharp-crested rectangular and triangular weir. 5						
7.	To verify the momentum equation experimentally	4					

	COURSE OUTCOMES							
CO 1.	The ability to analyze experimental data and develop empirical equations.							
CO 2.	O 2. Verification of basic principles and equations of fluid mechanics.							
CO 3.	The ability to use computers for data analysis, empirical equations, and presentation							

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		4 th				
COURSE TITLE	3	Struc	tural A	nalysis	– II	
COURSE CODE	1	CIV-2	50-C			
COURSE CATEGORY		Professional Core Course (PCC)				
	·					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	T P S TOTAL NO. OF CONTACT HOURS			
3	2	1 0 0 45				

COURSE OBJECTIVES				
1.	To introduce the students to basic theory and concepts of classical methods of			
	structural analysis			

	COURSE CONTENT					
Units	Description	Cont. Hours				
1.	Indeterminate Structures : Introduction to indeterminate structures; stability, static and kinematic indeterminacy of structures viz. beams, frames, trusses.	6				
2.	Energy Methods of Analysis of Structures : Strain energy and strain energy density – strain energy due to axial load (gradual, sudden, and impact loadings), shear, flexure. Castigliano's theorems – Maxwell's reciprocal theorem - Principle of virtual work - unit load method - application of energy theorems for computing deflections in determinate beams, plane frames, and plane trusses.	12				
3.	Force Methods of Analysis of Structures : Method of least work, method of consistent deformation for analysis of indeterminate beams; continuous beams; deflection of truss joints; analysis of two hinged arches and Cleypryon's Three-Moment equation.	10				
4.	Displacement Methods of Analysis by slope and deflection method: Analysis of indeterminate beams & frames (with & without sway) by classical displacement methods viz.; slope deflection method,	10				
5.	Displacement Methods of Analysis by moment Distrubution method: Distribution factors, analysis of indeterminate Beams and Frames (with and without Sway) by moment distribution method.	7				

	COURSE OUTCOMES				
CO 1.	Identify the degree of indeterminacy of different types of structures.				
CO 2.	Determine the strain energy and compute the deflection of determinate beams, frames				
	and trusses using energy principles.				

CO 3. Analyse statically indeterminate structures by force & displacement methods and building frames by approximate methods for horizontal and vertical loads.

	TEXT BOOKS/RE	EFERENCES
S. No	Book/Text Title	Author
1.	Structural Analysis	Hibbeler, R. C. Pearson Prentice Hall.
2.	Fundamentals of Structural Analysis	Leet, K. M., and Uang, C. M. Tata McGraw-
		Hill.
3.	Advanced Structural Analysis	Menon, D., CBS Publishers & Distributors
		Pvt. Ltd.
4.	Structural Analysis	Menon, D, Narosa Publishing House.
5.	Elementary Structural Analysis	Ashok, K. Jain, Nem Chand & Bros
6.	Advanced Structural Analysis with Finite	Ashok, K. Jain , Nem Chand & Bros
	Element Method	
7.	Mechanics of Structures Vol. II (Theory	Junnarkar, S. B., and Shah, H. J.
	and Analysis of Structures	Charotar Publishing House Pvt. Ltd.
8.	Basic Structural Analysis	Reddy, C. S, Tata McGraw Hill
9.	Intermediate Structural Analysis	Wang, C. K, Tata McGraw Hill
10.	Structural Analysis	Hibbeler, R. C. Pearson Prentice Hall.

ППСТ

PROGRAMME B.Tech Civil Engineering (Regular)							
SEMESTER		4 th	4 th				
COURSE TITLE	2	Surveying - II					
COURSE CODE		CIV-2	CIV-251-C				
COURSE CATE	GORY	Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS						
CREDITS	CREDITS L T P S TOTAL NO. OF CONTACT HOURS				TOTAL NO. OF CONTACT HOURS		
3	2	1 0 0 45					

COURSE OBJECTIVES				
1.	To impart a basic understanding of various aspects related to geodetic surveying and			
	other measurements in Civil Engineering.			
2.	To provide knowledge of Total Station & advanced surveying instruments.			
3.	To develop skills to set out Curves in the field using both Total Station and Theodolite.			

	COURSE CONTENT					
Units	Description	Cont. Hours				
1.	Contouring - Methods - Characteristics, and uses of contours -	9				
	Plotting – Methods of interpolating contours – Computations of					
	cross-sectional areas and volumes					
2.	Theodolite - Types - Description - Horizontal and vertical angles -	9				
	Temporary and permanent adjustments - Heights and distances-					
	Tangential and Stadia Tachometry -Sub tense method - Stadia					
	constants					
3.	Horizontal and vertical control, baseline, corrections, satellite	9				
	stations, reduction to center, trigonometrical levelling, single and					
	reciprocal observations.					
4.	Errors, Sources, precautions, and corrections, classification of					
	errors, true and most probable values, weighed observations, the					
	principle of least squares, normal-equation.					
5.	Classifications of total station: Electro-optical system, Working	9				
	principle, Infrared and Laser Total Station instruments. Microwave					
	system working principle, Microwave Total Station instruments.					
	Comparison between Electro-optical and Microwave Systems. Care					
	and maintenance of Total Station instruments.					

	COURSE OUTCOMES
CO 1.	Graduates will have a comprehensive understanding of geodetic surveying, including
	geodetic datum
CO 2.	Students will be adept at integrating cutting-edge technologies, such as advanced GPS,
	and other digital mapping tools, for precise and detailed survey data collection and
	analysis.
CO 3.	Graduates will demonstrate the ability to process and analyze complex survey data,
	utilizing statistical methods
CO 4.	Students will be equipped with the skills to manage and lead advanced surveying
	projects, including planning, executing, and overseeing complex surveying tasks in
	diverse fields such as construction, environmental management, and urban planning.

TEXT BOOKS/REFERENCES					
S. No	Book/Text Title Author				
1.	Surveying (volume 2)	Dr. K. R. Arora			
2.	Surveying (volume II)	S.K Duggal			
3.	Surveying (volume II)	B. C Punima			

PROGRAMME	PROGRAMME B.Tech Civil Engineering (Regular)					
SEMESTER		4 th				
COURSE TITLE	2	Fluid Mechanics-II				
COURSE CODE		CIV-2	52-C			
COURSE CATE	Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T P S TOTAL NO. OF CONTACT HOURS				
3	2	1 0 0 45				

	COURSE OBJECTIVES
1.	To develop the understanding of basic principles of fluid flow through pressure and
	gravity type conduit systems.
2.	To gain proficiency in applying the conservation equations to open channel flow
	problems.
3.	To develop and apply relationships for hydraulic jumps, surges, and critical, uniform
	and gradually-varying flows.
4.	To determine the losses in a flow system, flow through pipes, boundary layer flow and
	flow past immersed bodies.

	COURSE CONTENT				
Units	Description	Cont. Hours			
1.	Boundary Layer Theory Concept of boundary layer; Laminar and turbulent boundary layers; boundary layer thickness; von Karman integral equation; Laminar sub layer; hydro-dynamically smooth and rough boundaries, Separation of flow and its control, Cavitation.	10			
2.	Flow In Open Channels Classification of flow in channels, Steady and unsteady flow, Uniform and non-uniform flow, Laminar and turbulent flow, Sub-critical, critical and super-critical flow; Discharge through open channel by Chezy's formula; Most economic section of channels; Specific energy and specific energy curve; Hydraulic jump; Gradually varied flow.	10			
3.	Flow Through Pipes, Water Hammer and Surge Tanks Loss of energy in pipes, Major and minor losses, Loss due to sudden enlargement & contraction; Hydraulic gradient & total energy line; Flow through compound pipes, Equivalent pipes, Flow through parallel pipes, Flow through branched pipes; Power transmission through pipes; Water hammer in pipes, Gradual closure of valve, Sudden closure of valve in rigid pipe, Sudden closure of valve in elastic pipe, Surge tanks, Location of Surge tank and types of surge tanks.	09			

Page 13

4.	Fluid Flow Past Submerged Bodies Forces exerted by a flowing fluid on a stationary body, Drag and lift; Drag on sphere, Terminal velocity, Drag on a cylinder; Lift development on a circular cylinder, Flow of ideal fluid over stationary cylinder, Expression for lift forces acting on Rotating cylinder, Magnus effect	08
5.	Hydraulic Machines Types of Turbines, Description and principles of impulse and reaction Turbines, Turbine characteristics, Selection of Turbines; Unit quantities and specific speed, Runaway speed, Cavitation; Draft tube, Draft tube dimensions, Types of Draft tubes; Centrifugal pumps, specific speed power requirements, Reciprocating pumps.	08

	COURSE OUTCOMES					
CO 1.	Analyze and perform calculations on open channel flows, compute water surface					
	profiles and hydraulic jump characteristics					
CO 2.	Analyze and perform calculations on pipe flow problems involving turbulent flow,					
	understand the concept of friction factor, head loss, and design of pipes and analysis of					
	Pipe-networks.					
CO 3.	Perform calculations for determination of the drag and lift forces on submerged					
	bodies.					
CO 4.	Analyze water hammer phenomenon in closed conduits and concept of surge tanks.					
CO 5.	Determine various hydraulic characteristics of turbines and pumps.					

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Fluid Mechanics and Fluid Power Engineering	Kumar, D.S.				
2.	Engineering Fluid Mechanics	Garde R.J.				
3.	Fluid Flow in Pipes & Channels	Asawa, GL,				
4.	Engineering Fluid Mechanics	Kumar, K.L.				
5.	Introduction to Fluid Mechanics and Fluid Machines	Som, S.K. and Biswas, G.				

PROGRAMME		B.Tech Civil Engineering (Regular)			
SEMESTER		4 th			
COURSE TITLE		Civil Engineering Construction & Architectural Drawing			
COURSE CODE		CIV-253-C			
COURSE CATEGORY		Professional Core Course (PCC)			
	CREDITS AND CONTACT HOURS				
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3 2		1	0	0	45

	COURSE OBJECTIVES
1.	Understand architectural design principles and their integration in civil engineering.
2.	Learn technical drawing skills for residential, institutional, and public buildings.
3.	Develop proficiency in RCC structural drawings including slabs, beams, columns,
	staircases, and bar bending schedules.
4.	Analyze and design climate-responsive roofing systems, especially for cold regions like
	Kashmir.
5.	Gain skills in road and basic bridge drawing, including alignment, profiles, and
	structural components.

	COURSE CONTENT				
Units	Description	Cont. Hours			
1.	Architectural Drawing Fundamentals:	8			
	- Introduction to architecture and its relevance in civil engineering				
	- Principles of architectural design: symmetry, rhythm, scale				
	- NBC building bye-laws and climatic considerations				
	- Building materials for function and aesthetics				
	- Aesthetics in civil projects				
2.	Building Drawing:	8			
	- Drawing conventions (IS:962): symbols, scales, line types				
	- Representation of walls, doors, windows, roofs				
	- Planning and drawing of residential and public buildings				
	- Elevation and section drawings				
3.	RCC Drawing:	9			
	- RCC drawing standards and symbols				
	- Foundation types: isolated, combined footings				
	- Column and beam detailing with reinforcement				
	- Slab detailing (one-way, two-way), staircase reinforcement				
	- Framing plans, G.A. plans, bar bending schedule (BBS)				
	- Retaining wall (cantilever) drawing				
4.	Roof Drawing:	10			
	- Climatic needs of Kashmir: snow load, insulation				

	- Traditional Roofing	
	- Comparative study of flat vs pitched roofs	
5.	Road and Bridge Drawing:	10
	- Road drawing symbols, L-section, RL plotting	
	- Road intersection layouts (T/Y, rotaries), Basic Sketch	

	COURSE OUTCOMES				
CO 1.	Interpret and apply architectural and civil drawing standards in design				
CO 2.	Prepare and read technical drawings for civil structures				
CO 3.	Create detailed building drawings with accurate spatial layouts				
CO 4.	Design climate-appropriate roofs and understand traditional roofing systems				
CO 5.	Develop drawings for road alignments and simple RCC bridge components				

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Building Drawing	M.G.Shah				
2.	Civil Engineering Drawing	Chakorbarty				
3.	Civil Engineering Drawing	J.B.Mckay				
4.	Building Drawing	V.B.Sikka				

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		4 th				
COURSE TITLE		Sustainable Practices in Indian Knowledge System				
COURSE CODE		CIV-2	54-C			
COURSE CATEGORY		Indian Knowledge System (Core)				
	CREDITS AND CONTACT HOURS					
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS		
1 1		0	0	0	15	

	COURSE OBJECTIVES				
1.	To introduce the students to the concept of sustainability rooted in Indian traditional				
	knowledge systems, especially in the context of environmental ethics and civil				
	engineering.				
2.	To make students aware of practical and sustainable civil engineering practices found				
	in ancient India, linking them with contemporary environmental solutions.				

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	 Philosophical and Ethical Foundations of Sustainability in Indian Knowledge System Concept of "Dharma" and sustainability in Indian scriptures (Vedas, Upanishads, and Puranas). Role of nature and environment in Indian philosophy – Panchamahabhutas (Five elements). Traditional Indian approach to water conservation, forestry, agriculture, and urban planning. Eco-centric vs anthropocentric worldviews and its implications on civil engineering. Case study: Ancient water management systems such as step 	8
2.	wells, tanks, and canals. Traditional Practices and their Modern Relevance in Civil Engineering	
	 Traditional Indian building materials – Lime, mud, bamboo, stone; ecological benefits and durability. Vernacular architecture and climate-responsive design principles. Low-cost housing techniques and sustainable rural infrastructure. 	7

Daniel 1

•	Riverfront and watershed management in ancient India and its	
	contemporary adaptation.	
•	Integration of cultural, spiritual, and ecological values into	
	modern engineering design	

COURSE OUTCOMES						
CO 1.	Understand and articulate the philosophical basis of sustainable practices in Indian					
	culture and relate them to civil engineering challenges.					
CO 2.	Apply ancient sustainable practices in modern infrastructure and urban planning with					
	a focus on environmental consciousness.					

	TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author					
1.	Indian Knowledge Systems	Kapil Kapoor					
2.	Sustainable Civil Engineering Practices Suresh Chand						
3.	Cultural Heritage and Sustainable Development Anuradha Mukherjee						
4.	Vastu Shastra: The Ancient Science of Architecture	B. B. Puri					
5.	Water Architecture in South Asia	Julia Hegewald					

PROGRAMME	B.Tech Civil Engineering (Regular)							
SEMESTER		4 th						
COURSE TITLE	Struct	ture La	ıb-II					
COURSE CODE		CIV-2	CIV-266-C					
COURSE CATEGORY		Professional Core Course (PCC)						
·								
	CREDITS AND CONTACT HOURS							
CREDITS L		T P S TOTAL NO. OF CONTACT HOURS			TOTAL NO. OF CONTACT HOURS			
1	0	0	2	0	30			

	COURSE CONTENT					
Units	Experiments	Cont. Hours				
1.	Tensile Test of Steel – Structural steel.	5				
2.	Tensile Test of Round Steel Bars – Different Sizes. 5					
3.	Tensile and Compressive Strength of Timber – Parallel and Perpendicular respectively.	4				
4.	Shear Test of Timber.	4				
5.	Impact Test of Steel – Charpy and Izod.	4				
6.	Testing of Bricks and Stones as per IS Specifications.	4				
7.	Pull-out Test on Steel Bars for Bond Strength Determination.	4				

	COURSE OUTCOMES						
CO 1.	I. To evaluate the mechanical properties of materials such as steel and timber under						
	various loading conditions including tension, compression, shear, and torsion.						
CO 2.	To perform tests as per IS codes for determining the quality and suitability of						
	construction materials like bricks and stones.						
CO 3.	To determine bond behavior between steel and concrete through pull-out testing, and						
	interpret material behavior from experimental results.						

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		4 th					
COURSE TITLE		Surve	ying L	ab-II			
COURSE CODE		CIV-2	CIV-267-C				
COURSE CATEGORY		Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS						
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS		
1	0	0	2	0	30		

	COURSE OBJECTIVES						
1.	Measure Horizontal and vertical angles using Theodolite						
2.	Measure height of buildings using theodolite and Tachometer						
3.	Measure horizontal and vertical distances using Tachometry,						
4.	Setting out of works						
5.	Measure horizontal/vertical distances, horizontal/vertical angles, and area of sites						

SCOURSE CONTENT							
Units	Experiments	Cont. Hours					
1.	Contouring by Different Methods	5					
2.	Study of Theodolite	3					
3.	Measurement of horizontal angles by reiteration and repetition and vertical angles.	3					
4.	Theodolite survey traverse. 4						
5.	Heights and distances - Triangulation - Single plane method. 3						
6.	Tachometry - Tangential system - Stadia system - Sub tense system. 3						
7.	Setting out works - Foundation marking - Simple curve (right/left handed) Transition curve.						
8.	Measurement of Horizontal and Vertical distance using Total Station.	4					

	COURSE OUTCOMES					
CO 1.	To handle and use Theodolite for measurement of horizontal angles & vertical angles.					
CO 2.	To layout different types of traverses using Theodolite.					
CO 3.	To handle and use Tacheometer					
CO 4.	To set out works- Foundation markings, simple curves, and Transition curves.					
CO 5.	To handle and use Total station for measurement of horizontal/vertical distances,					
	traversing, and area calculation.					

PROGRAMME	B.Tech Civil Engineering (Regular)						
SEMESTER		4 th					
COURSE TITLE		Fluid	Mecha	nics Lab	o-II		
COURSE CODE		CIV-2	CIV-268-C				
COURSE CATEGORY		Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS						
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS		
1	0	0	2	0	30		

COURSE OBJECTIVES			
1.	To compare the results of analytical models introduced in a lecture to the actual		
	behaviour of real fluid flow.		
2.	To discuss and practice standard measurement techniques of fluid mechanics and their		
	applications.		
3.	To learn and practice writing technical reports		
4.	To work on small design projects. SCIENCE		

COURSE CONTENT				
Units	Experiments	Cont. Hours		
1.	To find friction factors for pipes of different materials.	5		
2.	To determine the minor head loss coefficient for different pipe fittings.	5		
3.	To determine the surface profile and total head distribution of a vortex.	5		
4.	To determine the elements of a hydraulic jump in a rectangular channel.	5		
5.	To determine the Manning's rugosity coefficient of a laboratory flume.	5		
6.	To obtain the velocity distribution for an open channel and to determine the values of α,β and	5		

COURSE OUTCOMES			
CO 1.	Utilize basic measurement techniques of fluid mechanics.		
CO 2.	Discuss the differences among measurement techniques		
CO 3.	Identify, name, and characterize flow patterns and regimes		
CO 4.	Understand basic units of measurement, convert units, and appreciate their magnitudes		
CO 5.	Demonstrate a practical understanding of friction losses in internal flows		

D---- | 42

TEXT BOOKS/REFERENCES				
S. No	Book/Text Title	Author		
1.	"Fluid Mechanics with Laboratory Manual," Prentice	Bireswar Majumdar,		
	Hall India Learning Private Limited, January 2010.			
2.	"Fluid Mechanics & Machinery Laboratory Manual,",	Dr. N. Kumara Swamy		
	Charotar Books DistAnand; 1st Edition, January			
	2014.			

D....1

PROGRAMME	PROGRAMME B.Tech Civil Engineering (Regular)					
SEMESTER		4 th				
COURSE TITLE		Computer Based Drafting Lab				
COURSE CODE		CIV-269-C				
COURSE CATEGORY		Professional Core Course (PCC)				
			CREI	DITS AN	D CONTACT HOURS	
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
1	0	0	2	0	30	

	COURSE OBJECTIVES
1.	To learn how to deal with the different AutoCAD Windows and their contents.
2.	To gain knowledge in drawing of various building components and structural drawings
	of a building.
3.	To obtain knowledge of modelling of various building components and special sections
	of a building.
4.	To become aware of different modelling, drafting, analysis, and design software.

	S COMPANIES	
	COURSE CONTENT	
Units	Topic	Cont. Hours
1.	Introduction to Computer Aided Drawing: Introduction, Auto- Cadd Window, Starting, Opening and Saving a Drawing, Prototype Drawing and closing of drawing. Different forms of Projections and plotting in Cadd, Geometrical construction in Cadd.	6
2.	Software For Cad And Practice Exercises On Cad:	
	Drawing cross sections (I, C, T, angles, solid and hollow sections), To draw horizontal and vertical lines keep ortho on; To draw inclined lines keep the ortho off; Draw the alphabets as per the given dimensions. Practice exercises on simple drawing areas and sections, surfaces, etc.	6
3.	Drawing of Plans of Buildings:	
	Development of Working of Building. Drawing of different plans for single and Multi-storey Buildings; Drawing in different layouts. Reinforcement detailing's and structural drawings.	6
4.	Drawing Of Sections And Elevations Of Buildings:	6
	Drawing of different sections and elevations of buildings. Drawing of single and multi- storey buildings, their sections, and their elevations. Reinforcement detailing's and structural drawings. 3D drafting of Building.	

5.	Drawing Of Building Components:	6
	Detailing of Building components like Doors, Windows, Ventilator, Lift, Stairs, Elevators. Drawing of Plumbing and electrical drawings of buildings.	

	COURSE OUTCOMES
CO 1.	Recognizing the need for computer aided drafting of buildings.
CO 2.	Understanding the method of Drafting in CAD and drafting 2D and 3D visualizations
CO 3.	Gaining skill based knowledge of drafting tools.

	TEXT BOOKS/REFERENCES	
S. No	Book/Text Title	Author
1.	"Engineering Drawing + AutoCAD," New Age	K.Venugopal V. Prabhu Raja
	International Publishers, 2011	
2.	"Introduction to AutoCAD 2015 for Civil Engineering	Nighat Yasmin
	Applications", SDC Publishers, 2014.	
3.	"Exploring AutoCAD Civil 3D 2018", CADCIM, 2018.	Sham Tickoo

Daniel 14

PROGRAMME B.Tech Civil Engineering (Regular)							
SEMESTER		4 th	4 th				
COURSE TITLE		Survey Camp					
COURSE CODE		CIV-270-C					
COURSE CATEGORY		Professional Core Course (PCC)					
			CREI	DITS AN	D CONTACT HOURS		
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
1	0	0	2	0	30		

Survey Camp using modern survey equipment e.g., Total Station etc-. The camp must involve work in a large area. At the end of the camp, each student must have mapped and contoured the area. The camp record shall include all original field observations, calculations, and plot. The Workshop will be conducted for every batch once in the degree it will be completed in 10 working days or equal hours.

COURSE OBJECTIVES	
1.	To impart intensive training in the use of surveying instruments
2.	To train the students to appreciate practical difficulties in surveying on the field
3.	Making the students conversant with the camp life
4.	Training the students to communicate with the local population
5.	Providing an opportunity to the students to develop team spirit
6.	To train the students for self-management

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	Module 1: Introduction to survey, types of survey, the importance of	
	survey in the field.	3
2.	Module 2: Exposure to different types of survey projects carried out in	3
	the present day industry.	
3.	Module 3: introduction of leveling and handling of the total station.	4
4.	Module 4: Methods of data collection using a total station.	3
5.	Module 5: Methods to provide control points.	3
6.	Module 6: Preparation of site plan and layout.	3
7.	Module 7: Prepare L-Section and C-Section of the road not less than 3 Km	4
8.	Module 8: Preparation of contour plan of land not less than 30 Kanal.	4
9.	Module 9: Hand on practical session on plotting and mapping by using	3
	the software Module10: Report making.	

COURSE OUTCOMES

Page | 47

CO 1.	Interpret the contours.
CO 2.	Work in teamwork.
CO 3.	Mark a road alignment of (L-section, Cross-section) a given gradient connecting any
	two stations on the map
CO 4.	Calculate the earthwork
CO 5.	Prepare a topographical plan of a given area.

	CERTIFICATION
Certi	fication will be issues only after;
1.	Fulfilling Attendance Criteria i.e. it's compulsory to achieve 100% attendance in the
	Workshop.
2.	Certificate of Moral Ethics during workshop issued by coordinator program.
3.	Passing the Assessment.
	ASSESSMENT
Asses	sment Will Consist Of;
1.	Practical work SCIENCE
2.	Report Writing
3.	Presentation
4.	Drawing
5.	Viva-voce
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	BEST PERFORMANCE AWARD

NOTE: Best performance award will be given on the bases of overall performance of students in the Camp.

.....

PROGRAMME B.Tech Civil Engineering (Regular)			ring (Regular)			
SEMESTER		5 th				
COURSE TITLE	2	Desig	n of Co	ncrete S	Structures-I	
COURSE CODE		CIV-3	01-C			
COURSE CATE	Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	T P S TOTAL NO. OF CONTACT HOURS			
3	2	1 0 0 45				

	COURSE OBJECTIVES
1.	To equip students with a basic understanding of the behavior of reinforced concrete (RC)
	structures and to develop the skill to analyze and design reinforced concrete members.

COURSE CONTENT				
Units	Description	Cont. Hours		
1.	Working Stress Method vs. Limit State Design. Principles of ultimate	4		
	load design and load factors.			
2.	Flexural design: balanced and under-reinforced sections. Shear	5		
	design and detailing. Design examples for singly and doubly			
	reinforced beams. L and T beams.			
3.	One-way and two-way slabs: flexural and shear design. Detailing of	12		
	slab reinforcements.			
4.	Axially loaded columns: short and slender columns. Design examples	12		
	for different shapes of column designs.			
5.	Detailing and durability considerations in design of columns, beams	12		
	and slabs. Design of connections and anchorage and development			
	lengths			

	COURSE OUTCOMES
CO 1.	Understanding of reinforced concrete as a construction material and various design
	philosophies & their differences.
CO 2.	Analyze and design RC members under flexure, shear, and axial force in line with Indian
	standards.
CO 3.	Design the two-way RC slabs using moment coefficients.

Page 1

	TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author					
1.	Structural Analysis	Hibbeler, R. C. Pearson Prentice Hall.					
2.	Fundamentals of Structural Analysis	Leet, K. M., and Uang, C. M. Tata McGraw- Hill.					
3.	Advanced Structural Analysis	Menon, D., CBS Publishers & Distributors Pvt.					
		Ltd.					
4.	Structural Analysis	Menon, D, Narosa Publishing House.					
5.	Elementary Structural Analysis	Ashok, K. Jain, Nem Chand & Bros					
6.	Advanced Structural Analysis with	Ashok, K. Jain , Nem Chand & Bros					
	Finite Element Method						
7.	Mechanics of Structures Vol. II (Theory	Junnarkar, S. B., and Shah, H. J.					
	and Analysis of Structures	Charotar Publishing House Pvt. Ltd.					
8.	Basic Structural Analysis	Reddy, C. S, Tata McGraw Hill					
9.	Intermediate Structural Analysis	Wang, C. K, Tata McGraw Hill					

PROGRAMME	B.Tech Civil Engineering (Regular)					
SEMESTER		5 th				
COURSE TITLE	3	Geotechnical Engineering-I				
COURSE CODE		CIV-3	02-C			
COURSE CATE	Professional Core Course (PCC)					
	·					
	CREDITS AND CONTACT HOURS					
CREDITS	L T P S TOTAL NO. OF CONTACT HOURS					
3	2	1 0 0 45				

	COURSE OBJECTIVES				
2.	To develop basic understanding of soils.				
3.	To understand flow of water through soils.				
4.	To understand soil compressibility characteristics.				
5.	To understand different kind of stresses in soils.				
6.	To understand soil investigation.				

COURSE CONTENT				
Units	Description	Cont. Hours		
1.	Introduction: Soil and its formation, various processes and agencies for			
	formation, Types of Soils. Basic definitions. Relations and interrelations,			
	Three phase soil Model, Index properties, classification of soils (USCS &			
	ISCS)	10		
2.	Soil Hydraulics: Flow-through soils, Darcy's Law. Permeability and			
	factors affecting permeability and determination in the lab/Field.			
	Steadystate Flow, seepage force, Laplace equation for steady- state			
	flow, flow nets for homogenous embankments with & without toe			
	filters.	07		
3.	Soil Compressibility: One Dimensional Consolidation, Terzaghi's			
	equation. Consolidation test, e log p curves. Consolidation settlement,			
	time required for settlement. Compaction, laboratory compaction			
	tests, proctor compaction, compaction curve, and control on field			
	compaction.	10		
4.	Effective Stress & Stress Distribution: Total & effective stresses, Pore			
	Water pressure, Stress distribution under concentrated load.			
	Boussineq's method	08		
5.	Soil Investigation & Clay Mineralogy: Laboratory & Field Investigation.			
	Basic definitions, Sub-soil exploration, Standard Penetration methods,			
	(SPT&SCPT) Geo-Physical methods, Minerals Present in clay.			
	Dependence of behavior of clay on type of mineral.	10		

	COURSE OUTCOMES				
CO 1.	To classify soils and understand their index properties.				
CO 2.	To analyze flow through soils.				
CO 3.	To perform/demonstrate soil compaction tests				
CO 4.	To determine stress distribution in soils.				
CO 5.	To utilize various methods of soil investigation in field and laboratory				

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Soil Mechanics and Foundation Engineering	K.R.Arora				
2.	Soil Mechanics and Foundation Engineering	S.K.Garg				
3.	Theoretical Soil Mechanics	Terzaghi & Peck				
4.	Soil Mechanics	S.B. Saighal				
5.	Geotechnical Engineering	C.Venkataramiah				

PROGRAMME B.Tech Civil En			h Civil I	Engineer	ring (Regular)	
SEMESTER		5 th				
COURSE TITLE	2	Wate	r Supp	ly Engin	eering	
COURSE CODE CIV-303-C						
COURSE CATE	Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T P S TOTAL NO. OF CONTACT HOURS				
3	2	1 0 0 45				

	COURSE OBJECTIVES		
1.	To impart understanding of various aspects related to supply of pure and safe		
	drinking water to communities and the conservation of water.		
2.	To make technology choice to deal with water quality issues, operate and maintain		
	working treatment systems and do troubleshooting of the problems in these systems.		
3.	To design, construct, operate and maintain water conveyance system.		
4.	To acquire sufficient knowledge on basic design of conventional and advanced water		
	treatment processes.		

COURSE CONTENT					
Units	Description	Cont. Hours			
1.	Water Quality: Introduction and scope, Various sources of water, Water Quality Parameters, significance and codal recommendations of limits for various uses. Physical, chemical and biological characteristics, water demand, per capita demand	09			
2.	Water Consumption And Water Distribution: Water Consumption for various uses, variation in Demand & Supply. Population forecasting methods, storage capacities of reservoirs, Systems of distribution, distribution networks	12			
3.	Water Transportation: Pipe designs, network analysis by various methods, pipe materials and joints, leakage prevention.	09			
4.	Treatment Process: Water treatment: Conventional treatments like screening, sedimentation, Coagulation, Filtration, Disinfection. Advanced treatments like Ozonation and Activated carbon adsorption, etc.	10			
5.	Sanitation: Water supply in buildings, Plumbing and fixtures, Sanitation of buildings.	5			

COURSE OUTCOMES

Page | 53

CO 1.	Select appropriate treatment to raw water useful for domestic as well as construction
	purpose.
CO 2.	Maintain the pipe-network for water supply system effectively.
CO 3.	Calculate and Estimate the impurities present in water used for domestic as well as
	construction works.
CO 4.	Prepare lay out plan and maintain water distribution and sewer-networks.
CO 5.	Test raw water as per the standard practices

	TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author					
1.	Water Supply and Sanitary Engineering	S.K.Hussain					
2.	Water and Wastewater Technology	Hammer, M.J.					
3.	Introduction to Environmental Engineering	Davis, M.L. and Cornwell, D.A.,					
4.	Water Supply And Sanitary Engineering	Rangwala					
5.	Water Supply and Sanitary Engineering S.K.Garg						
	E-REFERENCES						
6.	https://archive.nptel.ac.in/courses/105/105/105105201						
7.	https://onlinecourses.nptel.ac.in/noc20_ce23/preview_						
8.	https://www.edx.org/learn/engineering/purdue-university-a	nalysis-and-design-ofwater-					
	distribution-systems						

2005

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		5 th				
COURSE TITLE		Concrete Technology				
COURSE CODE		CIV-304-C				
COURSE CATEGORY		Professional Core Course (PCC)				
CREDITS AND CONTACT HOURS						
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2 1 0 0			0	0	45	

	COLIDER ODLEGRING
	COURSE OBJECTIVES
1.	To impart knowledge of concrete materials and their properties – Understand the
	role of cement, aggregates, water, and admixtures in concrete production and
	performance.
2.	To develop skills in concrete mix design and testing – Learn proportioning methods,
	workability assessment, strength evaluation, and non-destructive testing techniques.
3.	To introduce advanced and sustainable concrete technologies – Explore durability
	aspects, fiber-reinforced concrete, and eco-friendly innovations in concrete production.
	\(\frac{2}{5}\right\) \(\frac{1}{5}\right\)

COURSE CONTENT					
Units	Description	Cont. Hours			
1.	Concrete as a construction material, constituents of concrete.	08			
	Properties of concrete materials: cement, aggregates, water,				
	admixtures. Hydration of cement: setting, hardening, and strength				
	development.				
2.	Principles of concrete mix design: factors influencing mix	12			
	proportions. Proportioning of concrete mixes for desired strength				
	and workability. Special concrete mixes: lightweight, high-strength,				
	self-compacting concrete.				
3.	Properties of Fresh and Hardened Concrete - Workability,	08			
	segregation, bleeding, setting time, strength development. Factors				
	affecting properties and performance. Curing of concrete and its				
	importance.				
4.	Testing of Fresh and Hardened Concrete - Tests for workability:	09			
	slump, compaction factor, flow. Tests for compressive strength,				
	tensile strength, and durability. Non-destructive testing methods				
	for concrete evaluation.				
5.	Durability aspects, fiber-reinforced concrete, sustainability in	08			
	concrete production, advanced concrete technologies and their				
	applications				

Page | 55

COURSE OUTCOMES					
CO 1.	Explain the properties and role of cement, aggregates, water, and admixtures in				
	concrete.				
CO 2.	Apply mix design principles for strength, workability, and special concretes.				
CO 3.	Evaluate workability, setting, strength, and curing effects.				
CO 4.	Perform and interpret fresh and hardened concrete tests.				
CO 5.	Understand durability, fiber-reinforced, and sustainable concrete technologies.				

TEXT BOOKS/REFERENCES						
S. No	S. No Book/Text Title Author					
1.	Properties of Concrete	Neville, A.M. Pearson Publishers, New Delhi, 2004				
2.	Concrete Technology	Shetty, M.S. S.Chand& Company New Delhi, 2002,				
3.	Concrete Technology	Gambhir,M.L. TaTa McGraw Hill New Delhi, 1995				
4.	Concrete Technology	Neville, A.M. and Brookes, J.J, Pearson. 1994				
5.	Properties of Concrete	Neville, A.M. Pearson Publishers, New Delhi, 2004				

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		5 th				
COURSE TITLE		Quantity Survey and Cost Estimation				
COURSE CODE		CIV-3	05-C			
COURSE CATEGORY		Professional Core Course (PCC)				
CREDITS AND CONTACT HOURS						
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1	0	0	45	

	COURSE OBJECTIVES					
1.	To produce a forecast of the probable cost of a future project					
2.	Identify and prioritize cost-saving opportunities.					
3.	To determine the true (full) costs of each item of the project					
4.	To evaluate the target of road construction project					
5.	To assess and evaluate the differences in the value of the assets.					

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	Introduction to Estimation.	7
	Definition and importance of Quantity Surveying and Cost	
	estimation Definition of items of a work and their units. Data	
	required for the preparation of an estimate. Types of preliminary	
	Estimate and Detailed estimate. Forms used in estimating.	
2.	Analysis of Rates.	7
	Definition and importance of analyses of rates. Introduction to	
	Preparing of rates, Labor schedule, material schedule, and rate	
	schedule. Analysis of rates for item of work of buildings e.g.,	
	Earthwork in the foundation, lime concrete in Foundation, concrete	
	in foundation and superstructure, Brickwork in foundation and	
	superstructure, stone masonry, RCC masonry, RCC work,	
	Plastering, color washing, woodwork, DPC, and steelwork, etc.	
3.	Detailed Estimation of masonry structures.	11
	Introduction to estimates of different types of buildings. Estimates	
	of walls. Methods of building estimate; Long wall and short wall	
	method, centerline methods. Estimate of masonry platform.	
	Estimate of a masonry tank. Estimate of a single room building.	
	Estimate of two room building with CGI roof over wooden	
4.	Detailed Estimates of R.C.C Structures.	10
	Estimation of R.C.C slabs: One-way slab, Two-way slab. Estimate of	
	a RCC Beams: Simply supported Beam, cantilever beam, lintel Beam.	
	RCC Column. Bar bending schedule.	
5.	Estimation of Roads.	10

Methods of estimating earthwork: (a) Mid Sectional Area	
Method.(b) Mean Sectional Area Method(c) Prismoidal Formula	
Method. (d) Graphical Method.	
Estimate of a metallic road: Estimation of 3-layer metallic road	
introduction about influence of Material variation and cost in	
layered metallic road.	

	COURSE OUTCOMES							
CO 1.	CO 1. Give the Students a reasonable idea of the project's cost to help them decide whether							
	the work can be undertaken as proposed or not.							
CO 2.	Learner should be capable enough to analyze the project resources.							
CO 3.	Learner should be able to make DPR of buildings.							
CO 4.	Learner should know the cost variation due to material change in road construction.							
CO 5.	Learner should assess and calculates the property value.							

	TEXT BOOKS/REFERENCES								
S. No	Book/Text Title VENCE C	Author							
1.	Estimating & Costing	Datta.							
2.	Estimating & Costing	Mahajan.							
3.	Cost Estimation: Methods and Tools.	Gregory K. Mislick, Daniel A.							
		Nussbaum.							
4.	Civil Estimating and Costing	A.K.Upadhyay.							

TZLII

PROGRAMME		B.Tecl	h Civil I	Engineer	ring (Regular)	
SEMESTER		5 th				
COURSE TITLE	<u> </u>	Geote	chnica	l Engine	eering Lab-I	
COURSE CODE		CIV-3	16-C			
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)	
	·					
			CRE	DITS AN	ID CONTACT HOURS	
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
1 0		0	2	0	30	

COURSE OBJECTIVES							
1.	To understand the laboratory tests used for the determination of physical, index, and						
	Engineering properties of soil						

	COURSE CONTENT							
Units	Experiments	Cont. Hours						
1.	Soil Identification Tests	3						
2.	Water Content Determination Test	3						
3.	Field Density Measurement	3						
4.	Specific Gravity Test	4						
5.	Sieve Analysis Test	3						
6.	Sedimentation Analysis Test	3						
7.	Atterberg and Shrinkage Limits	3						
8.	IS Light Heavy Compaction Tests 2005	4						
9.	Permeability Tests	4						

	COURSE OUTCOMES								
CO 1.	CO 1. To determine basic soil properties and consistency limits.								
CO 2.	Draw the complete particle size distribution curve of a given soil.								
CO 3.	Determine the Compaction characteristic of a given soil.								
CO 4.	Determine the Permeability of any given soil specimen								

	TEXT BOOKS/REFERENCES									
S. No	Book/Text Title	Author								
1.	IS codes relevant to each Test.	IS Codes								
2.	Geotechnical Engineering, New Age International publishers, 2012.	C. Venkatramaiah								
3.	Basic and Applied Soil Mechanics, New Age International Publishers, 2012	Gopal Ranjan and A. S. R. Rao,								
4.	Soil Mechanics and Foundation Engineering, Standard Publishers, 2011.	K. R. Arora,								

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		5 th				
COURSE TITLE	[Envir	onmer	ital Engi	ineering Lab	
COURSE CODE		CIV-3	17-C			
COURSE CATE	Profes	ssional	Core Co	urse (PCC)		
			CREI	DITS AN	D CONTACT HOURS	
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
1	0	0	2	0	30	

	COURSE OBJECTIVES					
1.	To introduce students to how the standard environmental experiments relating to					
	water and wastewater quality are performed.					
2.	To know which tests are appropriate for given environmental problems, statistically					
	interpret laboratorial results and write technical reports, and apply the laboratorial					
	results to problem identification, quantification, and basic environmental design and					
	technical solutions.					
3.	To Understand how to classify and analyze various quality parameters of raw water.					
4.	To make the students as to suggest a required type of treatment to purify raw water					
5.	To make the students as analysts to differ quality requirements for industrial waters					
	and domestic waters.					

COURSE CONTENT								
Units	Experiments 2005	Cont. Hours						
1.	To measure the dissolved oxygen concentration of a water sample.	2						
2.	To determine the pH of the given wastewater sample	2						
3.	To determine the turbidity of the given sample of wastewater using nephelo turbidity meter.	3						
4.	Determination of Total, Suspended and Dissolved Solids in a given water sample.	3						
5.	Determination of Alkalinity of a given water sample.	2						
6.	Determination of Chlorides of a given water sample.	3						
7.	Determination of Acidity of a given water sample.	2						
8.	Determination of Total Hardness (Soda-Reagent Method.) of a given water sample.	3						
9.	Determination of Colour/Odour of a given water sample.	3						
10.	Determination of Dissolved Oxygen content of a given water sample.	2						
11.	Determination of C.O.D.	2						
12.	Determination of optimum dose of coagulant	3						

	COURSE OUTCOMES							
CO 1.	Perform standard environmental experiments relating to water quality, and know							
	which tests are appropriate for environmental problems.							
CO 2.	Statistically analyze and interpret laboratory results.							
CO 3.	Analyse various physico-chemical and biological parameters of water in case of quality							
	requirements.							
CO 4.	Understand and use the water and wastewater sampling procedures and sample							
	preservations.							
CO 5.	Demonstrate the ability to write clear technical laboratory reports							

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	A text book of "Water supply Engineering", by Khanna	Santhosh Kumar Garg						
	publishers.							
2.	A text book of "Chemical analysis of water and soil", by	Dr. KVSG Murali Krishna						
	Reem.							
3.	"Practical Manual of Water Quality Analysis", Chemical ZU ZHI BIAN XIE							
	Industry Press, January 2012.							
4.	"Laboratory Manual for the Examination of Water,	Hans Hermann Rump						
	Waste Water, and Soil," Wiley-VCH; 3 edition, January							
	2000.							

HICT

2005

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		5 th					
COURSE TITLE		Concr	ete Te	chnolog	y Lab		
COURSE CODE		CIV-3	CIV-318-C				
COURSE CATEGORY		Professional Core Course (PCC)					
	CREDITS AND CONTACT HOURS						
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS		
1	0	0 2 0 30					

	COURSE OBJECTIVES					
1.	To know the concept and procedure of different types of tests conducted on cement,					
	aggregate, and finished concrete.					
2.	To understand the procedure of designing the concrete mix of given specification of its					
	ingredients and appropriate water-cement ratio and admixtures.					

	COURSE CONTENT					
Units	Experiments	Cont. Hours				
1.	FINE AGGREGATES: Grading and zoning of fine aggregates, Specific	4				
	gravity of fine aggregates.					
2.	COARSE AGGREGATES: Grading and zoning of Coarse aggregates.	5				
	Determination of water absorption of coarse aggregates					
3.	CEMENT: Determination of standard consistency of cement. ,	5				
	Determination of initial setting time and final setting time of cement,					
	Determination of fineness of cement, Soundness test of concrete.					
4.	CONCRETE: IUST					
	Determination of consistency of fresh concrete by slump test.					
	Determination of workability of freshly mixed concrete by Compaction	16				
	factor test.					
	Determination of cube strength of concrete for different mixes and					
	different W/C ratio Determination of tensile strength of concrete.					
	Determination of flexural strength of concrete beam.					

COURSE OUTCOMES					
CO 1.	Perform different tests conducted on cement, aggregate, and concrete at the site.				
CO 2.	Perform a non-destructive test on concrete.				
CO 3.	Design the concrete mix as per the site conditions and specification of materials available				
	there.				

n....l.ca

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		6 th				
COURSE TITLE		Desig	n of St	eel Stru	ctures	
COURSE CODE		CIV-350-C				
COURSE CATEGORY		Professional Core Course (PCC)				
	CREDITS AND CONTACT HOURS					
CREDITS L T P S TOTAL NO. OF CONTACT HOURS					TOTAL NO. OF CONTACT HOURS	
3	2	1 0 0 45				

	COURSE OBJECTIVES						
1.	Understand advanced steel design concepts – Learn the principles of Working Stress						
	and Limit State Design for steel structures.						
2.	Develop competency in designing structural members – Analyze and design tension						
	members, compression members, beams, and beam-columns considering stability and						
	strength.						
3.	Master steel connection design – Design bolted, welded, and moment connections for						
	structural integrity and performance.						

	COURSE CONTENT				
Units	Description	Cont. Hours			
1.	Introduction to advanced design concepts for steel structures.				
	Working Stress Method vs. Limit State Design for steel structures.	09			
2.	Design of tension members: Types of tension members and loading	09			
	conditions. Design for axial tension and net area. Block shear rupture				
	and yielding.				
3.	Types of compression members and loading conditions. Euler's	09			
	buckling formula and effective length. Interaction formula for				
	combined axial and flexural loading. Design of laterally supported				
	beams.				
4.	Types of steel connections: bolted, welded, and composite. Design of	09			
	bolted and welded connections. Eccentrically loaded and moment				
	connections.				
5.	Design of laterally unsupported beams and design of beam-	09			
	columns.				

	COURSE OUTCOMES				
CO 1.	Understand steel design principles – Explain the concepts of Working Stress and				
	Limit State Design for steel structures.				
CO 2.	Analyze and design tension members - Determine net area, block shear rupture, and				
	yielding criteria for axial tension members.				
CO 3.	Design compression members and beams – Apply Euler's buckling formula and				
	interaction formulas to design stable compression members and beams.				
CO 4.	Evaluate and design steel connections - Design bolted, welded, and eccentric				
	connections for structural stability.				
CO 5.	Design complex steel structural elements – Develop solutions for laterally				
	unsupported beams and beam-columns under combined loading.				

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	Design of Steel Structures - Limit States	Subramanian, N. Oxford University						
	Method	Press.						
2.	Design of Steel Structure	Duggal, S. K. Tata McGraw Hill.						
3.	Steel Structures – Design & Behaviour	Salmon, C. G., Johnson, J. E., and						
	E Jack Company	Malhas, F. A., Pearson						
4.	Design and Analysis of Steel Structures	Vizrani, V. N., Ratwani, M. M., and						
		Kumar, V. Khanna Publishers.						

D. TILICE

2005

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)
SEMESTER		6 th			
COURSE TITLE		Geote	chnica	l Engine	eering-II
COURSE CODE		CIV-3	51-C		
COURSE CATEGORY		Professional Core Course (PCC)			
	CREDITS AND CONTACT HOURS				
CREDITS L T P S TOTAL NO. OF CONTACT HOURS				TOTAL NO. OF CONTACT HOURS	
3	2	1 0 0 45			

	COURSE OBJECTIVES				
1.	To understand shear strength of soil along with the different tests to evaluate it.				
2.	To understand the basic equations for bearing capacity analysis of soils.				
3.	To understand basic theories for earth pressure calculations.				
4.	To understand the different soil stabilization methods.				
5.	To understand the different theories for slope stability analysis of soils.				

	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	Shear Strength: Shear strength concept. Mohr Coulomb equation. Direct shear test, Triaxial compression test under different drainage conditions, CD, CU and UU. Unconfined compression test. Vane shear test. Modified shear strength envelope.	10					
2.	Bearing Capacity And Foundations: Basic definitions, Terzaghi's solution for ultimate bearing capacity. Size effects and water table effect effects on bearing capacity. Skemptons bearing capacity equation. Plate load test. Design principles for footing and rafts, Pile foundation types, classification and determination of load-carrying capacity, dynamic and static methods. Pile load test, pile groups efficiency of pile groups.	10					
3.	Earth Pressure: Lateral earth pressure, Rankine's theory for active and passive States. Lateral earth pressure under various conditions, like surcharge, sloping backfill, and high water table behind the wall. Earth pressure diagrams. Total thrust. Tension Cracks.	10					
4.	Stabilisation: Methods of stabilization, Brief introduction to each of the methods of stabilization such as mechanical stabilization, Compaction Chemical stabilization, Precompression, Stone columns, stabilization by geotextiles.	08					
5.	Stability Of Slopes: Infinite slopes, types of slope failures, stability number Swedish and Friction circle methods. Submergence case, complete drawdown case, Steady seepage case.	07					

COURSE OUTCOMES					
CO 1.	To equip the knowledge of strength and mechanical behavior of soils.				
CO 2.	To understand the concepts of bearing capacity and foundations.				
CO 3.	To understand the practical aspects of earth pressure and retaining structures.				
CO 4.	To understand the concepts of slope stability along with its practical application				

	TEXT BOOKS/REFERENCES								
S. No	Book/Text Title	Author							
1.	Soil Mechanics and Foundation Engineering	K.R.Arora							
2.	Soil Mechanics and Foundation Engineering	S.K.Garg							
3.	Theoretical Soil Mechanics	Terzaghi & Peck							
4.	Soil Mechanics	S.B. Saighal							
5.	Geotechnical Engineering	C.Venkataramiah							

Page | 66

PROGRAMME	B.Tecl	n Civil I	Engineer	ring (Regular)			
SEMESTER		6 th					
COURSE TITLE	3	Trans	portat	ion Eng	ineering-I		
COURSE CODE		CIV-3	52-C				
COURSE CATE	Professional Core Course (PCC)						
	·						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S TOTAL NO. 0			TOTAL NO. OF CONTACT HOURS				
3	2	1	0	0	45		

	COURSE OBJECTIVES						
1.	To provide basic knowledge in transportation so that students can understand and						
	solve transportation-related problems and design for highway mode of transportation,						
	focusing on highway users' characteristics, geometric and pavement design, traffic						
	engineering, and transportation planning.						

	COURSE CONTENT	
Units	5 Description	Cont. Hours
1.	Introduction: Scope, history, classification of roads. Comparison with	10
	other modes of transportation.	
2.	Alignment Design: Route survey and highway location. Geometric	10
	design: cross-section elements; sight distances, horizontal and vertical	
	alignment	
3.	Pavement Design: Factors affecting pavement design, types of	10
	pavements, Methods of flexible pavement design.	
4.	Rigid Pavement Design: Stress due to load and temperature in rigid	08
	pavements, Introduction to design methods of rigid pavements	
5.	Highway Materials and Construction: Properties and tests for road	07
	aggregates and bituminous materials, design of bituminous concrete	
	mix, methods of preparing the subgrade, base course, and construction	
	of various types of surface covers.	

	COURSE OUTCOMES					
CO 1.	Give necessary information, prepare a horizontal and vertical alignment, including super					
	elevation, which complies with AASHTO standards.					
CO 2.	Understand the relationship between the environment and transportation infrastructure					
	and its importance in project development of transportation projects.					
CO 3.	Utilize CAD software to prepare a plan, profile, and x-sections depicting a typical roadway					
	design.					
CO 4.	Prepare well-written design narratives documenting the various parameters and					
	standards used in the design process so another individual could review the work and					
	understand what decisions and assumptions were used and why.					
CO 5.	Understand the mathematics behind the development of tables and charts for					
	determining highway design criteria.					

	TEXT BOOKS/REFERENCES										
S. No	Book/Text Title	Author									
1.	Highway Engineering.	Khanna, S.K. and Justo.									
2.	Highway Engineering	Bhanot, K.L.									
3.	Principles of Transportation and Highway	Rao, G.V.									
	Engineering.										
4.	Pavement Design and Management Guide by	Ottawa, Ontario, Edn. Dr.									
	Transportation Association of Canada.	Ralph Haas,									

TZLII

PROGRAMME	B.Tecl	n Civil I	Engineer	ing (Regular)		
SEMESTER		6 th				
COURSE TITLE	Į.	Engin	eering	Hydrol	ogy	
COURSE CODE		CIV-3	53-C			
COURSE CATEGORY		Professional Core Course (PCC)				
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1	0	0	45	

	COURSE OBJECTIVES						
1.	To impart the knowledge for understanding elementary aspects of hydrology.						
2.	To know diverse methods of collecting the hydrological information, which is essential,						
	to understand surface and ground water hydrology.						
3.	To know the basic principles and movement of ground water and properties of ground						
	water flow.						
4.	To impart the knowledge of Fluvial Hydraulics for use in the planning, design, and						
	management of water resources projects.						
5.	To impart knowledge of reservoir design studies for practical use.						

	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	Hydrology: Scope and applications of Hydrological cycle; precipitation its mechanism, forms, weather systems, Indian scenario, measurement by rain Gauges, gauge network adequacy, missing data determination, and consistency. Hyetographs and methods of determining mean rainfall. Hydrological Abstractions: Evaporation, factors affecting, measurement, empirical equations, analytical methods, reservoir evaporation; Evapotranspiration, its measurement, ET Equations, potential evapotranspiration. Transportation, Interception, Depression storage, Infiltration.	10					
2.	Stream flow: Stream flow measurement: Direct and indirect methods, stage-discharge relationship. Factors affecting Runoff. Rainfall-Runoff relationships. Unit Hydrograph, Peak Flow, velocity &p Discharge measurements. Hydrographs: Definition, components, base flow separation, effective rainfall, unit hydrograph, its derivation, applications, and limitations.	10					
3.	Flood Estimation And Groundwater: Occurrence and distribution of floods; various methods of flood estimation; viz Rational method, empirical methods, U.H. method, Design flood definition. Flood routing: Reservoir and channel routing. Occurrence and distribution of ground Water, types of aquifers,	10					

	aquifer properties, Darcy's law, and steady one-dimensional aquifer flow, Well Hydraulics: Steady flow to wells in confined and unconfined aquifers.	
4.	Reservoir Design Studies: Types of reservoirs, storage capacity, Mass-curve technique, fixation of capacity, safe yield, And reservoir sedimentation: trap efficiency, capacity inflow ratio, life of reservoirs.	08
5.	Fluvial Hydraulics: Principles of sediment transport, critical tractive force, Shield's plot, Bed and suspended load. Bed movement, White's Theory, Rigid and loose Boundaries.	07

	COURSE OUTCOMES					
CO 1.	To perform multiple analysis on precipitation data.					
CO 2.	To estimate various components of hydrological cycle such as stream flow, runoff,					
	evapotranspiration and infiltration.					
CO 3.	To measure components of hydrological water balance in field.					
CO 4.	To perform hydrograph analysis and estimate magnitude of flood.					
CO 5.	To determine reservoir capacity and sedimentation.					

TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author				
1.	Engineering Hydrology	Subramanaya, K.				
2.	Hydrology for Engineers	Linsely, K., Kohler, A.				
	Tis, Lee City Williams	and Paulhus L.H.				
3.	Irrigation Water power and water Resources Engineering	Arora, K.R.				
4.	Hydrology Principles Analysis and Design	Ragunath, H.M.				
5.	Mechanics of sediment transportation and alluvial stream	Garde, R.J. and				
	problems	RangaRaju K.G.				

PROGRAMME	B.Tecl	h Civil l	Engineer	ring (Regular)		
SEMESTER		6 th				
COURSE TITLE	<u> </u>	Struc	tural A	nalysis-	III	
COURSE CODE		CIV-3	54-C			
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)	
	CREDITS AND CONTACT HOURS					
CREDITS L T			P	S	TOTAL NO. OF CONTACT HOURS	
3 2 1 0 0 45						

	COURSE OBJECTIVES				
1.	To introduce the concept and applications of Influence Line Diagrams (ILDs) for both				
	determinate and indeterminate structures.				
2.	To equip students with the ability to analyze various types of arches, including three-				
	hinged, two-hinged, and fixed arches under different loading conditions.				
3.	To understand the structural behavior of cables and suspension bridges, including				
	temperature effects and the role of stiffening girders.				
4.	To explain the principles of plastic analysis and its application in determining the				
	collapse load of structures.				
5.	To develop problem-solving skills and an analytical approach towards structural				
	behavior under moving loads and ultimate load conditions.				

	COMPANIES COMPANIES						
	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	INFLUENCE LINE DIAGRAMS FOR DETERMINATE STRUCTURES:	10					
	Influence line for reactions in statically determinate beams,						
	Principles of influence lines, and application to determinate						
	structures (Beams, Trusses, Arches). Criteria for absolute 'maximum						
	moment and shear under a series of moving loads. Muller Breslau's						
	Principle.						
2.	INFLUENCE LINE DIAGRAMS FOR INDETERMINATE	10					
	STRUCTURES:						
	Influence line for shear force, bending moment, and support reaction						
	components ofindeterminate beams and arches.						
3.	ARCHES: 'Types of Arches, Analysis of Three Hinged Arches, Two	8					
	Hinged and Fixed Arches-Parabolic Arches and circular arches, Rib						
_	Shortening and temperature Effects.						
4.	CABLES AND SUSPENSION BRIDGE: Statics of suspension cable,	7					
	Cables supported at different levels, Temperature effect, Analysis of						
_	suspension bridge with and without stiffening girders						
5.	PLASTIC METHOD: 'Concept, Assumptions, Shape Factor for	10					
	different cross-section, Collapse Load, Load Factor, Plastic modulus						
	of a section, Plastic moment of resistance, Theorems of plastic						
	analysis, "Methods of analysis. Computation of Collapse load for a						
	fixed beam and continuous beam						

	COURSE OUTCOMES			
CO 1.	Develop and interpret Influence Line Diagrams for determinate and indeterminate			
	structures.			
CO 2.	Analyze and evaluate arch structures considering rib shortening and thermal effects.			
CO 3.	Apply the principles of structural mechanics to suspension systems, including			
	cables and suspension bridges with or without stiffening systems.			
CO 4.	Apply plastic analysis methods to fixed and continuous beams and compute			
	collapse loads effectively.			
CO 5.	Critically assess structural stability and load carrying capacity, helping in designing			
	safer and more economical structures.			

	TEXT BOOKS/REFERENCES						
S. No	No Book/Text Title Author						
1.	Structural Analysis	R.C. Hibbeler					
2.	Structural Analysis	C.S. Reddy					
3.	Advanced Structural Analysis	Devdas Menon					
4.	Plastic Analysis of Structures	M.L. Gambhir					

Page | 72

PROGRAMME		B.Tech Civil Engineering (Regular)			
SEMESTER	6 th				
COURSE TITLE	<u> </u>	Traditional Wisdom for Earthquake Resistant & Disaster Resilient			
		Desig	ning		
COURSE CODE		CIV-355-C			
COURSE CATEGORY		Indian Knowledge System (Core)			
			CREI	DITS AN	D CONTACT HOURS
CREDITS L T P S TOTAL NO. OF CONTACT HOURS					
1 1 0 0 0 15		15			

	COURSE OBJECTIVES				
1.	To familiarize students with traditional construction wisdom for seismic safety.				
2.	To introduce indigenous materials and techniques that enhance disaster resilience.				

	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	 Traditional Seismic Wisdom and Practices Introduction to vernacular architecture in seismic zones Case studies from Himalayan and Japanese traditional buildings Importance of timber-laced masonry, symmetrical layouts, light roofing Traditional practices of bracing, tying, and energy dissipation Role of community knowledge and inter-generational transmission 	7.5					
2.	 Materials and Methods in Disaster Resilience Overview of local materials (mud, timber, bamboo, lime) Construction techniques: dhajji dewari, kath kuni, cob, adobe Advantages of traditional materials: flexibility, thermal performance, cost-effectiveness Integration of modern tools with traditional methods for hybrid solutions Government schemes and codes that promote traditional practices 	7.5					

COURSE OUTCOMES					
CO 1.	Understand the importance of traditional seismic design elements and practices.				
CO 2.	Apply local construction techniques to enhance building resilience against				
	earthquakes.				

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Earthquake Resistant Traditional Construction	Arya, A.S.				
2.	Vernacular Architecture in the Himalayas	V. S. Vyas				
3.	Guidelines for Earthquake Resistant Non-Engineered Construction	UNESCO				
4.	Building Materials & Construction	G.C. Sahu				
5.	Traditional Buildings: A Global Survey of Structural Forms and Design	B. Feilden				

D.... 1.7

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		6 th				
COURSE TITLE		Geotechnical Engineering Lab-II				
COURSE CODE		CIV-3	CIV-366-C			
COURSE CATEGORY		Professional Core Course (PCC)				
,						
			CREI	DITS AN	D CONTACT HOURS	
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
1	0	0	2	0	30	

	COURSE OBJECTIVES
1.	To understand different characteristics of the soil.

COURSE CONTENT						
Units	Experiments	Cont. Hours				
1.	Consolidation Test	4				
2.	Direct Shear Test	4				
3.	Unconfined Compression Test	3				
4.	Unconsolidated Undrained Triaxial Test	4				
5.	Vane Shear Test	4				
6.	Consolidated Undrained Triaxial Test	4				
7.	Standard Penetration Test	4				
8.	Plate Load Test	3				

COURSE OUTCOMES						
CO 1.	Determine consolidation characteristics of a given soil sample.					
CO 2.	Obtain shear strength parameters of different types and consistencies of soils and under different drainage conditions.					
CO 3.	Perform a Standard Penetration test of soil to obtain SPT (N) – value.					
CO 4.	Determine allowable soil pressure of soil foundation system by vertical plate load test.					

Page | 75

PROGRAMME		B.Tech Civil Engineering (Regular)						
SEMESTER		6 th						
COURSE TITLE		Transportation Lab-I						
COURSE CODE		CIV-3	CIV-367-C					
COURSE CATEGORY		Professional Core Course (PCC)						
			CREI	DITS AN	D CONTACT HOURS			
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS			
1	0	0	2	0	30			

COURSE OBJECTIVES						
1.	Learn the Fundamentals of Bitumen and & its engineering behaviour.					
2.	Learn the Fundamentals of Aggregate & its engineering behaviour.					

COURSE CONTENT							
Units	Description	Cont. Hours					
1.	TESTS ON AGGREGATE: Aggregate grading, Specific Gravity,	15					
	Crushing Abrasion, Impact, Soundness, Flakiness, Shape, Fineness						
	Modulus.						
2.	TESTS ON BITUMEN: Viscosity, Penetration, Softening point, Flash	15					
	& Fire Point, Ductility.						

	COURSE OUTCOMES
CO 1.	Identify engineering properties of aggregate.
CO 2.	Identify the grade & properties of bitumen.

TEXT BOOKS/REFERENCES								
S. No	Book/Text Title Author							
1.	"Highway Engineering". Nem Chand Brothers, Roorkee Khanna, S.K. and Justo,							
2.	Highway Materials and Pavement Testing., Nem Chand Khanna, Justo &							
	Brothers, Roorkee. Veeraragavan							
3.	Material Testing Laboratory Manual Standard Kukreja, Kishore & Chawla,							
	Publishers, Nai Sarak, Delhi							

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		7 th					
COURSE TITLE		Design of Concrete Structures-II					
COURSE CODE		CIV-4	CIV-401-C				
COURSE CATEGORY		Professional Core Course (PCC)					
			CREI	DITS AN	D CONTACT HOURS		
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3	2	1	0	0	45		

	COURSE OBJECTIVES
1.	To introduce advanced design concepts for structural elements – Understand the
	application of Working Stress and Limit State Design methods for foundations, retaining walls, and water tanks.
2.	To develop competency in foundation design - Analyze and design shallow and
	deep foundations, including isolated, combined, mat, and strip footings, considering
	bearing capacity and settlement criteria.
3.	To equip students with knowledge of retaining wall and water tank design -
	Apply earth pressure theories for retaining walls and design cantilever, counterfort
	walls, and various types of water tanks under different loading conditions.

	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	Introduction to advanced design concepts for specific structures. Working Stress Method vs. Limit State Design for foundations, retaining walls, and water tanks.	09					
2.	Types of foundations: shallow and deep foundations. Design considerations for bearing capacity and settlement. Design of isolated and combined footings.	09					
3.	Design of mat Footings and strip Footings. Design of pedestals.	09					
4.	Principles of retaining wall design. Earth pressure theories and stability analysis for retaining walls. Design of cantilever and counterfort retaining wall.	09					
5.	Water tank design: types and load considerations. Design of circular and rectangular water tanks.	09					

	COURSE OUTCOMES			
CO 1.				
	for foundations, retaining walls, and water tanks.			
CO 2.	Develop proficiency in designing shallow, deep, mat, and strip footings considering			
	bearing capacity and settlement.			
CO 3.	Apply earth pressure theories to design cantilever and counterfort retaining walls.			
CO 4.	. Solve practical structural design challenges ensuring safety, stability, and			
	serviceability.			
CO 5.	Explore sustainable and efficient design practices for durable structural systems.			

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Advanced Reinforced Concrete Design	Krishna Raju, N. CBS Publishers and				
		Distributors Pvt Ltd.				
2.	Comprehensive RCC Design	Punmia, B. C., Jain, A. K., and Jain, A. K. Laxmi				
		Publications.				
3.	Reinforced Concrete Design	Pillai, S. U., Menon, D. Tata McGraw Hill.				
4.	Reinforced Concrete Structures	Park, R., and Paulay, T, John Wiley and Sons				
5.	Plant-cast: Precast and Prestressed	Sheppard, D. A., and Phillips, W. R. Mc, Graw				
	Concrete	Hill.				

PROGRAMME		B.Tech Civil Engineering (Regular)			
SEMESTER		7 th			
COURSE TITLE		Irrigation & Hydraulic Structures			
COURSE CODE		CIV-4	02-C		
COURSE CATE	Professional Core Course (PCC)				
CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3	2	1	0	0	45

COURSE OBJECTIVES				
1.	1. To develop the understanding of necessity of irrigation and requirements			
2.	To introduce the basic concepts relevant to Irrigation and its techniques.			
3.	To understand the principles of Design of Irrigation & Hydraulic Structures.			
4.	To study the causes and the preventive measures for water logging and flooding.			
5.	To study the importance of cross drainage works and types			

COURSE CONTENT				
Units	Description	Cont. Hours		
1.	General Introduction: The necessity of Irrigation in India, Advantages, and Disadvantages of Irrigation, Techniques of water distribution in farms, Soil moisture & Crop water requirements; Duty, Delta, Base period, Crop period, Consumptive use, Irrigation requirements	09		
2.	Canal Irrigation: Types of canals, parts of a canal irrigation system with diagram, channel alignment, assessment of water requirements, distribution system of canal irrigation, estimation of channel losses; design of channels by regime & semi-theoretical approaches. Canal lining	09		
3.	Cross Drainage Works: The necessity of Cross Drainage works, their types & Drainage works of Drainage works - Aqueduct, Syphon Aqueduct, Super passage, siphon, siphon super passage, Level Crossing, Detailed design of Aqueduct and Cross sections	09		
4.	Diversion Head works: Parts of diversion head works, types of weirs and barrages, introduction to design of weirs on permeable foundations, control of silt entry into a canal, silt excluders, Silt ejectors and their drawing. A basic introduction to Bligh's theory. A detailed study of khosla's theory.	09		
5.	Water Logging & Flood Control: auses & Preventive measures of waterlogging, Drainage of irrigated lands, saline & Eamp; alkaline lands. Flood problems, types of floods, Flood control measures	09		

	COURSE OUTCOMES			
CO 1.	1. To optimize the effective usage of water resources for irrigation purposes.			
CO 2.	To comprehend the basic design principles for the development of an efficient irrigation			
	system.			
CO 3.	To design channels and other irrigation structures required for irrigation, drainage,			
	flood control, and other water-management projects.			
CO 4.	To identify a suitable method of irrigation and drainage of the waterlogged area.			

TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author			
1.	Irrigation Water power & Water Resources Engineering	Arora, K.R.			
2.	Irrigation Engineering	G. Singh			
3.	Theory and Design of Irrigation Structures	Varshney & Gupta			
4.	Irrigation Engineering	I. E. Houk			
5.	Irrigation	J. D. Zimmerman			
	E-REFERENCES				
6.	https://nptel.ac.in/courses/126105010				
7.	https://nptel.ac.in/courses/105104103				
8.	https://archive.nptel.ac.in/courses/105/105/105105203/				

птст

Page | 80

PROGRAMME	B.Tech Civil Engineering (Regular)						
SEMESTER	7 th						
COURSE TITLE	3	Trans	portat	ion Eng	ineering-II		
COURSE CODE		CIV-4	03-C				
COURSE CATE	Professional Core Course (PCC)						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S TOTAL NO. OF CONTACT				TOTAL NO. OF CONTACT HOURS			
3	2 1 0 0 45						

	COURSE OBJECTIVES					
1.	The objectives of this course are to learn the transportation fundamentals.					
2.	To expose the students to Railway planning, design, construction and maintenance, and					
	planning and design principles of Airports and Harbors.					

COURSE CONTENT						
Units	Description	Cont. Hours				
1.	Components of traffic system- vehicle characteristics; human characteristics, road characteristics & traffic-control devices.	9				
2.	Traffic flow theory-flow parameters; fundamental relation of traffic flow, road capacity, and level of service concept.	10				
3.	Intersections- signalized intersections, channelization and roundabouts	8				
4.	Railway Development of Indian railways. Permanent way and its component, formation width, ballast, sleepers, rails. Creep and tilt in rails.	8				
5.	Railway Tracks: Track resistance and tractive effort, gauge problem, super-elevation near branching of curves, gradients. Track fittings and fastenings, points and crossings, station Platforms, yards, and sidings.	10				

	COURSE OUTCOMES
CO 1.	Students who complete this course will be able to use transportation fundamentals in field.
CO 2.	The students will have the ability to Plan and Design various civil Engineering aspects of Railways, Airports, and Harbors.

	TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author					
1.	Railway Engineering	Rangawala, S.C.					
2.	Railway Engineering	Arora, S.P. and Saxena.					
3.	Airport Planning and Design	Khanna, Arora and Jain.					
4.	Airport Planning and Design	Horren Jeff.					

PROGRAMME B.Tech Civil Engineering (Regular)				ring (Regular)			
SEMESTER	7 th						
COURSE TITLE	2	Wast	e Wate	r Engine	eering		
COURSE CODE		CIV-4	04-C				
COURSE CATE	Professional Core Course (PCC)						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S			P	S	TOTAL NO. OF CONTACT HOURS		
3	2	1 0 0 45					

	COURSE OBJECTIVES					
1.	To acquire knowledge on physical and chemical properties of water					
2.	To get knowledge on the working principles of various physical, chemical, and					
	biological treatment systems for water and wastewater, including sludge.					
3.	To understand the principles of Design of physical, chemical and biological treatment					
	systems.					
4.	To get knowledge about the various modes of conveyance of wastewater from the					
	source of its generation to the treatment plant.					
5.	To study the causes and preventive measures of various types of environmental					
	pollution.					

	COURSE CONTENT						
Units	Description	Cont. Hours					
1.	Environmental Pollution: Importance of clean environment, Sources of pollution to land, water & pollution, general effects of pollution, pollution by sewage, calculation of storm water & pollution, general effects of pollution, pollution by sewage, calculation of storm water & pollution, general effects of pollution, pollution by sewage, calculation of storm water & pollution.	08					
2.	Sewage Disposal: Methods of sewage disposal, effects of disposal on land & mp; in water bodies, self-purification of streams, BOD calculations, Types & mp; design of sewers.	12					
3.	Sewage Treatment: Unit operations in sewage treatment, Screening, sedimentation, grit removal etc. septic and imhoff tanks, soakage's for isolated systems, Filtration, activated sludge process, Oxidation ponds, Methods of aeration.	10					
4.	Air Pollution And Its Preventive Measures: Air Pollution & Samp; its effects on human health, factors responsible for air pollution, measurement of air pollution, air quality standards, and Engineering interventions to check air pollution, case studies relating to the topic.	08					
5.	Solid Waste Management: Solid waste problems, constituents of solid waste; Collection, transport and disposal of Solid waste .land filling, composting, incineration.	07					

	COURSE OUTCOMES					
CO 1.	An ability to estimate sewage generation and design sewer system.					
CO 2.	The required understanding on the characteristics and composition of sewage, self-					
	purification of streams.					
CO 3.	An ability to perform basic design of the unit operations and processes that are used in					
	sewage treatment.					
CO 4.	Understand the standard methods for disposal of sewage.					
CO 5.	Gain knowledge on sludge treatment and disposal.					

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	Sewage Treatment & Disposal & Waste Water	Modi, P.N.						
	Engineering.							
2.	Water supply & sanitary Engineering	Punmia, B.C.						
3.	Environmental engineering & management	Suresh K. Dhameja						
4.	Wastewater Engineering: Treatment and Reuse	Metcalf and Eddy						
5.	Environmental Engineering Sewage Waste Disposal S.K.Garg							
	and Air Pollution							
	5/5 1 1 1/2							
	E-REFERENCES							
6.	https://archive.nptel.ac.in/courses/105/106/105106119							
7.	https://archive.nptel.ac.in/courses/105/104/105104102							
8.	https://www.edx.org/learn/environmental-science/tsinghua-university-water-							
	andwastewater-treatment-engineering-biochemical-technology-shui-chu-li-gong-chengsheng-							
	wu-hua-xue-fang-fa							

PROGRAMME B.Tech Civil Engineering (Regular)							
SEMESTER		7 th					
COURSE TITLE Seminar							
COURSE CODE		CIV-4	16-C				
COURSE CATE	Professional Core Course (PCC)						
	·						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S			P	S	TOTAL NO. OF CONTACT HOURS		
1	1 0 0 1 1 30						

COURSE OBJECTIVES

To encourage and motivate the students to read and collect recent and relevant information from their area of interest confined to the relevant discipline from technical publications including peer reviewed journals, conferences, books, project reports, etc., prepare a report based on a central theme and present it before a peer audience.

MODUS OPERANDI						
Units	STEPS	Cont. Hours				
1.	A seminar shall be organized at the 7th semester of the Civil Engineering curriculum leading to the Degree of B.Tech in Civil Engineering. The students shall conduct thorough research on a topic of their choice, either library research or laboratory research. The students shall be guided in their research work by the staff members of the department. The students shall then make a hard-copy of their seminar report & submit it in the Seminar coordinator's office following which they will be asked to present their research work before their fellow students.	30				
2.	The students shall make a PowerPoint presentation of 15-20 minutes duration on the research work in front of their fellow students under the supervision of the faculty member/s assigned. A discussion on the same topic will follow the seminar presentation.					

	COURSE OUTCOMES
CO 1.	Identify and familiarize with some of the good publications and journals in their field of
	study.
CO 2.	Acquaint oneself with the preparation of independent reports, name them based on a
	central theme, and write abstracts, main body, conclusions, and references to identify
	their intended meaning and style.
CO 3.	Understand effective use of presentation tools, generate confidence in presenting a
	report before an audience and improve their skills in the same.
CO 4.	Develop skills like time management, leadership quality, and bond with an audience.

PROGRAMME	B.Tecl	h Civil l	Engineer	ring (Regular)			
SEMESTER		7 th					
COURSE TITLE		Trans	portat	tion Lab	-II		
COURSE CODE		CIV-4	17-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
	·						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S			P	S	TOTAL NO. OF CONTACT HOURS		
1	0	0 2 0			30		

COURSE OBJECTIVES

To provide basic knowledge in transportation so that students can understand and 1. solve transportation-related problems and design for highway mode of transportation with a focus on highway users' characteristics, geometric and pavement design, traffic engineering, and transportation planning

	COURSE CONTENT						
Units	Experiments/Practicals	Cont. Hours					
1.	Conduct traffic volume, speed, and O-D studies for analyzing road user	6					
	behavior.						
2.	Perform road inventory surveys and pavement condition assessments	6					
	including PCI evaluation.						
3.	Understand parking demand and perform a parking study with	6					
	practical design recommendations.						
4.	Study road safety aspects including accident spot identification and	6					
	analysis of black spots.						
5.	Design, optimize, and evaluate traffic signal systems based on traffic	6					
	surveys and delay analysis.						

	COURSE OUTCOMES
CO 1.	Analyze and interpret traffic flow characteristics for designing roadways and
	intersections.
CO 2.	Assess pavement condition and recommend maintenance strategies based on field data
	and Pavement Condition Index (PCI).
CO 3.	Evaluate parking requirements, design effective parking facilities, and propose suitable
	solutions for urban and highway environments.
CO 4.	Identify critical accident zones and recommend safety improvements for better traffic
	management and accident reduction.
CO 5.	Design traffic signals using traffic flow data, optimize signal timing, and improve level
	of service (LOS) at intersections.

	TEXT BOOKS/REFERENCES								
S. No	Book/Text Title	Author							
1.	"Highway Engineering". Nem Chand Brothers, Roorkee	Khanna, S.K. and Justo,							
2.	Highway Materials and Pavement Testing., Nem Chand	Khanna, Justo &							
	Brothers, Roorkee.	Veeraragavan							
3.	Material Testing Laboratory Manual Standard	Kukreja, Kishore &Chawla,							
	Publishers, Nai Sarak, Delhi								

PROGRAMME		B.Tecl	n Civil l	Engineer	ring (Regular)		
SEMESTER		7 th					
COURSE TITLE	Pre P	roject					
COURSE CODE		CIV-4	18-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
	•						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S			P	S	TOTAL NO. OF CONTACT HOURS		
2 0 0 4 0		0	60				

COURSE OBJECTIVES

1. To identify a research/industry related problem for the undergraduate project work with the respective faculty's guidance, and prepare a design and work plan.

MODUS OPERANDI

Each group comprising of around 5 students shall identify a project related to the curriculum of study. At the end of the semester, a preliminary synopsis report on the project shall be submitted to the Department for assessment. The students will be required to appear for viva voce, which shall be conducted in the department, in the faculty members' presence under the supervision of the HOD.

EVALUATION MECHANISM						
S. No.	Criteria	Max. Marks				
1.	Attendance and Regularity	10				
2.	Theoretical Knowledge and Individual Involvement	40				
3.	Quality and Contents of Project Synopsis	30				
4.	Presentation (in Presence of External Expert)	20				
	100					

	COURSE OUTCOMES
CO 1.	Conduct a literature survey in a relevant area of one's course of study and finally
	identify and concentrate on a particular problem in the field of civil engineering
CO 2.	Formulate a project proposal through extensive literature and/or discussion with
	learned resource persons in the industry and around.
CO 3.	Generate a proper execution plan of the project work to be carried out in phase second
	in the 8th semester through deliberations and improve presentation skills.

Page | 87

PROGRAMME		B.Tecl	n Civil l	Engineer	ring (Regular)		
SEMESTER		7 th					
COURSE TITLE	Indus	trial T	raining	(Internship)			
COURSE CODE		CIV-4	19-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)		
	•						
	CREDITS AND CONTACT HOURS						
CREDITS L T P S			P	S	TOTAL NO. OF CONTACT HOURS		
1	0	0 0 7.5			30		

COURSE OBJECTIVES						
1.	Recognise the importance of material manufacturing in Civil Engineering					
2.	Recognise the methods of Construction					
3.	Gain knowledge of Quality checks at Construction sites					

	COURSE CONTENT						
S. No	Components of Training	Duration					
1.	Visiting various material manufacturing plants/sites and Project Sites and collecting information about the Project, its cost, duration, methods of manufacturing, analysis, design, and construction of the site. Also, to gain knowledge on Quality evaluation at different plants or sites.						
2.	Collecting all data, writing a Short technical report, and demonstrating for evaluation before a committee comprising of three Faculty members of the Department. Student Also Require to Submit their Workplan and a detailed report (duly signed by the site in-charge/supervisor) highlighting the important Learning Outcomes.	4-Weeks					

COURSE OUTCOMES					
To accomplish skills/abilities for the following:					
CO 1.	Enhance Practical Knowledge of the Manufacturing and Construction Sites.				
CO 2.	Building Professional Know-how.				
CO 3.	Refreshing the Theoretical Subject Knowledge.				

TEXT BOOKS/REFERENCES				
S. No	Book/Text Title			
1.	Engineering Training Manuals by US Army			
2.	Dennis Lemaitre, Training Engineers for Innovation. 2018			
3.	M. MacDonald Steels, Effective Training for Civil Engineers. 1994			

Page | 88

PROGRAMME		B.Tec	h Civil	Engineer	ing (Regular)
SEMESTER		8 th			
COURSE TITLE		Earth	quake	Resista	nt Design
COURSE CODE	1	CIV-4	50-C		
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)
·					
			CRED	ITS ANI	O CONTACT HOURS
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3	2	1	0	0	45

	COVER OF COV
	COURSE OBJECTIVES
1.	To introduce the fundamentals of structural dynamics and their role in earthquake
	engineering.
2.	To analyze earthquake loads and structural response using various analysis methods.
3.	To develop an understanding of earthquake-resistant design principles for RCC and
	masonry structures.
4.	To emphasize the importance of ductility in seismic design as per IS 13920.
5.	To familiarize students with seismic codal provisions for masonry structures as per IS
	4326.

	Z CONTROL CONTROL C				
COURSE CONTENT					
Units	Description	Cont. Hours			
1.	Structural Dynamics and Earthquake Excitations	7			
	Fundamentals of structural dynamics: Free and forced vibration of single-degree-of freedom (SDOF) systems, equation of motion, damping, resonance, and natural frequency. Seismic excitation and response: Characteristics of earthquakes, earthquake ground motion parameters, response spectrum concept and its significance in seismic design.				
2.	Earthquake Load Analysis Methods	8			
	Concept of seismic design philosophy: Strength, stiffness, and ductility. Earthquake load analysis methods based on structural dynamics: Linear Static Analysis: Seismic coefficient method (Equivalent Static Method). Linear Dynamic Analysis: Response spectrum method. Non-Linear Static Analysis: Pushover analysis and performance-based design. Non-Linear Dynamic Analysis: Timehistory analysis. Introduction to IS 1893 (Part 1):2016 provisions for seismic load analysis.				
3.	Earthquake-Resistant Design of RCC Structures Seismic design of RCC elements as per IS 1893: Beams: Flexural and shear design under earthquake loads. Slabs: Role in lateral load transfer. Columns: Interaction of axial and lateral loads. Shear Walls: Placement and design considerations. Foundation Systems: Soil-structure interaction and seismic foundations.	10			

4.	Ductility Considerations in Earthquake-Resistant Design	10
	Concept of ductility and its importance in seismic design. Seismic	
	design and detailing guidelines as per IS 13920:2016: Ductile	
	detailing of RCC beams, columns, and joints. Reinforcement	
	requirements for seismic energy dissipation. Capacity design	
	approach for earthquake-resistant structures. Structural	
	irregularities and their effect on earthquake performance.	
5.	Seismic Codal Provisions for Masonry Structures	10
	Seismic behavior of masonry structures: Strength, ductility, and	
	failure mechanisms. Codal provisions for brick masonry buildings as	
	per IS 4326. Seismic strengthening and retrofitting techniques:	
	Reinforcement methods for improving seismic resistance. Case	
	studies on seismic failure and retrofitting of masonry buildings.	

	COURSE OUTCOMES				
CO 1.	Evaluate Structural Response to Earthquakes – Analyze free and forced vibrations				
	of SDOF systems, seismic ground motion parameters, and response spectra for				
	earthquake-resistant design.				
CO 2.	Apply Seismic Load Analysis and Design Principles – Implement linear and non-				
	linear seismic analysis methods as per IS 1893 (Part 1):2016 for RCC structures,				
	ensuring strength, stiffness, and ductility.				
CO 3.	Design and Retrofit Earthquake-Resistant Structures - Incorporate ductile				
	detailing as per IS 13920:2016 and seismic strengthening techniques for masonry				
	structures following IS 4326.				
CO 4.	Evaluate Structural Response to Earthquakes – Analyze free and forced vibrations				
	of SDOF systems, seismic ground motion parameters, and response spectra for				
	earthquake-resistant design.				

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	Dynamics of Structures	Anil K. Chopra						
2.	Seismic Design of Structures.	Pankaj Aggarwal & Shrikhande						
3.	Seismic Design of RCC Masonry Structures	Pauley, T. & Priestley						
4.	Relevant IS Codes	IS 1893 (P1):2016, IS 13920:2016, IS						
		4326:1993						

Page | 90

PROGRAMME		B.Tec	h Civil	Engineer	ring (Regular)	
SEMESTER		8 th				
COURSE TITLE	Proje	ct				
COURSE CODE	CIV-4	66-C				
COURSE CATEGORY		Profes	ssional	Core Co	urse (PCC)	
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
12	0	0	24	0	360	

	COURSE OBJECTIVES
1.	Understand Team Work and attain Professional attitude
2.	Recognize and analyze Problem/s
3.	Attain result/s and demonstrate those results before expert/s
4.	Gain knowledge in report writing

	COURSE CONTENT					
Units	Description	Cont. Hours				
1.	 The Project Work is composed of Two Parts: Collecting Literature. Doing Experimental Work, fieldwork, analyzing and designing, taking case studies, or building demonstrative models. Collecting all data, writing a technical report and demonstrating for evaluation before a committee. The composition of the committee is: Three faculty members of the Department, including the Supervisor concerned. An External Expert as approved by Competent Authority. The Committee mandate of evaluation will be: 40% to Supervisor. 60% to Committee out of which external expert will evaluate 50%. 	360				

COURSE OUTCOMES				
CO 1.	Enhance the technical capacities.			
CO 2.	Building Professional Know-how.			
CO 3.	Refreshing the Subject Knowledge.			

TEXT BOOKS/REFERENCES				
Book/Text Title				
Diana L.Friad, Project Work. Oxford University Press. 2002				
Anders Siing Anderson, Simon B. Heilesen, The Roskilde Model: Problem-Oriented Learning and Project Work. Springer International Publishing. 2014				

ANNEXURE-II

DETAILED SYLLABUS B.TECH CIVIL ENGINEERING (PROFESSIONAL ELECTIVE COURSES) (Batch 2024 & Onwards)

LIST OF PROFESSIONAL ELECTIVE COURSES

S. No	Course Title	Course	Semester	Area of Focus
		Code		
1.	Construction Technology	CIV-206-E	3 rd	Ability Enhancement
2.	Construction Management	CIV-255-E	4 th	Value Added Course
3.	Design Software	CIV-306-E	5 th	Skill Enhancement
4.	Advance Structural Analysis	CIV-356-E	6 th	Ability Enhancement
5.	Design of Bridge structure	CIV-405-E	7 th	Value Added Course
6.	Pre-Stressed Concrete	CIV-451-E	8 th	Value Added Course
8.	Engineering Geology and	CIV-256-E	4 th	Ability Enhancemen
7.	Introduction to Geotechnical Engineering	CIV-207-E	3 rd	Ability Enhancement
9.	Seismology Geotechnical Applications in	CIV-307-E	5 th	Entrepreneurship
9.	Construction	GIV-307-E	3	Entrepreneursinp
10.	Rock Mechanics & Tunnelling Technology	CIV-357-È	6 th	Ability Enhancement
11.	Geo-Environmental Engineering	CIV-406-E	7 th	Value Added Course
12.	Ground Improvement Techniques	CIV-452-E	8 th	Value Added Course
	TRACK 3: ENVIRO	NMENTAL EN	GINEERING	
13.	Introduction to Green Technology	CIV-208-E	3 rd	Ability Enhancement
14.	Environmental Pollution and Control	CIV-257-E	4 th	Value Added Course
15.	Solid Waste Management	CIV-308-E	5 th	Employability
16.	Climate Change: Impacts, Adaptation, and Resilience in Civil Engineering	CIV-358-E	6 th	Ability Enhancemen
	Environment Impact Assessment	CIV-407-E	7 th	Skill Development
17.	& Audit			

TRACK 4: HYDROLOGY AND WATER RESOURCE ENGINEERING								
19.	Introduction to Water Supply and Sanitation	CIV-209-E	3 rd	Value Added Course				
20.	Fluid Mechanics Applications in Engineering	CIV-258-E	4 th	Value Added Course				
21.	Groundwater Engineering	CIV-309-E	5 th	Entrepreneurship				
22.	Rural and Urban Sanitation	CIV-359-E	6 th	Value Added Course				
23.	Hydropower Engineering	CIV-408-E	7 th	Skill Development				
24.	Industrial Waste Water Treatment	CIV-454-E	8 th	Entrepreneurship				
25.	TRACK 5: TRANSPO	ORTATION EN	GINEERING 3 rd	Ability Enhancement				
	Materials							
26.	Road Safety and Management	CIV-259-E	4 th	Employability				
27.	Sustainable Transportation Infrastructure	CIV-310-E	5 th	Value Added Course				
28.	Transport Innovations and Industrial Progress	CIV-360-E	6 th	Skill Enhancement				
29.	Transportation Planning And Economics	CIV-409-E	7 th	Employability				
30.	Design and Maintenance Roads	CIV-455-E	8 th	Skill Enhancement				
	TRACK 6: SKILL DEVE	LOPMENT IN	ENGINEERI	NG				
31.	Soft Skill for Civil Engineers	CIV-211-E	3rd	Skill Enhancement				
32.	Entrepreneurship & Start-ups in Civil Engineering	CIV-260-E	4 th	Entrepreneurship				
33.	Waste Management	CIV-311-E	5 th	Skill Enhancement				
34.	Programming for Engineers	CIV-361-E	6 th	Skill Enhancement				
35.	AI & Machine Learning in Civil Engineering	CIV-410-E	7 th	Skill Enhancement				
36.	Contracts & Legal Aspects in Civil Engineering	CIV-456-E	8 th	Ability Enhancement				

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		3rd				
COURSE TITLE]	Const	ruction	Techno	logy	
COURSE CODE		CIV-2	06-E			
COURSE CATE	GORY	Profes	sional	Elective	Course (PEC)	
ELECTIVE TRA	Struct	ural Er	ngineerir	ng		
	·					
	CREDITS AND CONTACT HOURS					
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45	

	COURSE OBJECTIVES					
1.	To ensure serviceability and durability in newly constructed and renovated buildings.					
2.	To asses and evaluate the structural behavior under different load conditions.					
3.	To provides a broad overview about construction phase of buildings.					
4.	To know concept of sustainability.					
5.	To give broad understanding of computer modeling.					

	COURSE CONTENT	
Units	5 Description 7	Cont. Hours
1.	Construction Regulation and Standards:	12
	Introduction and importance of construction regulation and	
	standards. Construction Codes and its objectives. Introduction of	
	Types of codes in construction. Report making on implementation	
	of code (hand on practice).	
2.	Loads on Building:	8
	Loads on buildings. Factors affecting loads. Importance of load	
	calculations in designing of building elements. Failure in buildings	
	due to loads with at least two case studies.	
3.	System of building construction:	8
	Below grade construction. Masonry construction. Concrete	
	construction. Steel construction. Wood construction. Visuals of	
	system of construction.	
4.	Sustainable Construction:	10
	History of sustainable construction. Fundamentals of sustainable	
	construction .importance of sustainable construction. Assessment	
	of sustainability. Role of sustainable construction in the modern	
	era.	
5.	Building information modeling:	7

Introduction to building information mod .concept of building	
simulation .use of Autodesk in scaling building model from plane	
to design to construct and manage buildings .concept of project	
life cycle .concept of building history.	

	COURSE OUTCOMES					
CO 1.	Owner and designer may choose to exceed the requirements of code.					
CO 2.	Led to develop new structural form.					
CO 3.	Learn facets in construction methods.					
CO 4.	To construct Environmental friendly structures.					
CO 5.	Learner should analyze structure using advanced software.					

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author						
1.	Building Materials	Parbin Singh.						
2.	Building Materials and Construction	Gurcharan Singh						
3.	Building Materials and Construction	Ragawala.						
4.	Building Construction	Sushil Kumar						

Page | 96

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		4th				
COURSE TITLE		Const	ruction	Manage	ement	
COURSE CODE		CIV-2	55-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Struct	ural Er	ngineerir	ng	
	CREDITS AND CONTACT HOURS					
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45	

	COURSE OBJECTIVES					
1.	Prioritization of construction resources.					
2.	To know time cost analysis in construction projects.					
3.	To asses and evaluate the effects of construction industry.					
4.	To assess and evaluate the problems in field related to management.					
5.	To enable students to understand and manage various risks associated with					
	construction projects.					

	S COURSE CONTENT					
Units	Description	Cont. Hours				
1.	Introduction:	12				
	History of management thoughts. Definition, importance,					
	objectives and functions of construction management. History					
	of construction management. Contributions made by (i) Taylor (ii)					
	Gantt (iii) Henry Fayol (iv) Elton Mayo (v) chesterun barnard (vi)					
	Mc.Gregor (vii) Herzberg (viii) Linkert (viiii) Maslow (x) Gilbreth					
	(xi) Weber.					
2.	Network Techniques:	8				
	Introduction to network. Network terminology. Classification of					
	networks, and objectives of network Technique. Development of					
	network. PERT and CPM networks (with examples).					
3.	Cost Time Analysis in Network Planning:	8				
	Introduction to cost control. Importance and objectives of cost					
	control. Introduction to methods of cost analysis. Project cost and					
	its variation with time. Cost optimization (with examples).					
4.	Environmental Management:	10				
	Introduction to the environmental management system.					
	Preparation for EMS certification. Introduction to environmental					

	legislation and its objective and importance. Introduction to	
	environmental audit.	
5.	Risk Management:	7
	Introduction to risk and its importance in construction projects;	
	types of risks - safety, financial, technical, environmental, and	
	legal; risk identification and assessment methods; risk mitigation	
	and control strategies; safety risk management and legal	
	standards (IS codes); financial and environmental risks;	
	preparation of a basic risk management plan with case studies.	

	COURSE OUTCOMES
CO 1.	Give the Students an idea of construction management and its historical background.
CO 2.	Learner should be capable enough to analyse the project resources.
CO 3.	Learner should be able to make cost analysis with time variation
CO 4.	Learner should assess and calculates the impacts of construction on the environment.
CO 5.	Students will be able to identify, assess, and develop basic risk mitigation plans to
	handle site risks

TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author				
1.	Construction Planning and Management	P.S.Gahlot and B.M.Dhir.				
2.	Construction Management and Accounts	Jagroop Sing.				
3.	Environmental Engineering and Management	Dr.Suresh K. Dhameja.				

TZZIII

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)
SEMESTER		5th			
COURSE TITLE	2	Design	n Softw	are	
COURSE CODE		CIV-3	06-E		
COURSE CATE	GORY	Profes	ssional	Elective	Course (PEC)
ELECTIVE TRACK		Struct	ural Er	ngineerir	ng
	CREDITS AND CONTACT HOURS				
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3	2	1	0	0	45

	COURSE OBJECTIVES
1.	Know various techniques of modeling building structures
2.	To obtain knowledge of analyzing and designing various structural elements
3.	To gain knowledge of modeling and design of masonry buildings
4.	To obtain post-processing analysis and design report and to compare with manual
	calculations for validation of results
5.	Know various techniques of modeling building structures

	S COURSE CONTENT	
Units	Description	Cont. Hours
1.	Introduction to ETABS Software:	12
1.		12
	File Menu, Defining material properties, Definition and Sizing of	
	elements, Supports, Loading and Load Combinations, Analysis	
	options, Post Analysis checks.	
2.	Modelling of Multi-Story Residential Modelling in ETABS	8
	Software:	
	Study of the design of various building elements; Planning various	
	components of a building with column positioning; Introduction	
	of /ETABS/; Modelling of the building in the /ETABS is giving all	
	boundary conditions (supports, loading etc.).	
3.	Analysis of residential building by Multi-Story Residential	8
5.	Design by ETABS software:	
	•	
	Detailing of beams, columns, slab with section proportioning and	
	reinforcement, Analysis of various structural components of the	
	modal building; Study of analysis Data of the software.	
4.	Design of residential building by ETABS software:	10
	Analysis and designing various types of footings- Isolated,	
	Combined, Strap, Strip, and Mat in ETABS/ software.	
5.	Post Processing of Design Data:	7

Building Post-Processing Data related to bending, shear, Torsion, and displacements. Comparing different manual charts and software-based data.

	COURSE OUTCOMES
CO 1.	To accomplish the abilities/skills for the following.
CO 2.	Recognizing the benefits of designing by Software.
CO 3.	Understanding various design techniques of different components of a Building.
CO 4.	Understanding various design techniques of different components of a Building
CO 5.	Gaining Knowledge of Post Processed design data for understanding of design
	problems

TEXT BOOKS/REFERENCES					
S. No	Book/Text Title				
1.	Etabs tutorial, Computers and Structures USA				
2.	U.H.Varyani. Structural Design of Multi Storeyed Building. 2014				

Page | 101

PROGRAMME		B.Tecl	n Civil l	Engineer	ring (Regular)
SEMESTER		6th			
COURSE TITLE	<u> </u>	Advar	iced Sti	ructural	Analysis
COURSE CODE		CIV-3	56-E		
COURSE CATEGORY		Profes	ssional	Elective	Course (PEC)
ELECTIVE TRACK		Struct	ural Er	ngineerir	ng
	CREDITS AND CONTACT HOURS				
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3 2		1	0	0	45

	COURSE OBJECTIVES
1.	Develop advanced proficiency in structural analysis techniques, including matrix
	methods.
2.	Explore complex structural systems and their behavior
3.	Apply structural analysis knowledge, including matrix analysis, to solve complex
	engineering problems.

	COURSE CONTENT	
Units	5 Description 3	Cont. Hours
1.	Matrix Methods Of Trusses Structural Analysis:	10
	Introduction to matrices and properties of matrices, Concept of	
	Matrix Method & Flexibility Method. Formulation of Stiffness matrix	
	for simple Planar Elements, Analysis of Planar Trusses (basic).	
2.	Matrix Methods Of Beams And Frames:	12
	Formulation of element stiffness matrix for beam/ frame element.	
	Analysis of Beams (basic) and Frames (basic) using stiffness method	
	under nodal and between the nodal loads.	
3.	Introduction To Finite Element Method (Fem):	13
	Introduction to Finite Element Method of Structural Analysis.	
	Problem Classification, Modelling, and Discretization. Interpolation,	
	Elements, notes, and D.O.F. Example Applications and history of FEM.	
	Solving problems by FEM.	
4.	One-Dimensional Elements And Computational Procedures	10
	Bar and Beam Elements. Bar and Beam elements of arbitrary	
	orientation. Assembly of Elements. Properties of Stiffness matrices.	
	Boundary Conditions. Exploiting Sparsity. Solving Equations.	
	Mechanical and thermal Loads or Stresses. Structural Symmetry.	

D. . . 1 403

	COURSE OUTCOMES
CO 1.	Demonstrate advanced proficiency in structural analysis techniques, including matrix
	analysis.
CO 2.	Analyze complex structural systems and predict their behavior.
CO 3.	Apply advanced methods, including matrix analysis, to solve complex engineering
	problems

	TEXT BOOKS/REFERENCES
S. No	Book/Text Title
1.	Chopra, A. K. (2014). Dynamics of Structures: Theory and Applications to Earthquake
	Engineering (5th ed.). Pearson.
2.	Clough, R. W., & Penzien, J. (2003). Dynamics of Structures (3rd ed.). McGraw-Hill
	Education.
3.	Ghali, A., & Neville, A. M. (2015). Structural Analysis: A Unified Classical and Matrix
	Approach (6th ed.). CRC Press

D 1400

PROGRAMME B.Tech Civil Engineering (Regular)					ring (Regular)	
SEMESTER		7th				
COURSE TITLE	2	Design	n of Bri	dge Stru	ctures	
COURSE CODE		CIV-4	05-Е			
COURSE CATE	GORY	Professional Elective Course (PEC)				
ELECTIVE TRA	CK	Structural Engineering				
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1 0 0 45				

COURSE OBJECTIVES				
1.	Introduce the fundamentals of bridge engineering.			
2.	Analyze and design bridge deck slabs and plate girder bridges.			
3.	Design RCC slab culverts as per standard IRC provisions.			

COURSE CONTENT				
Units	Description	Cont. Hours		
1.	Introduction to Bridges:	12		
	Classification of bridges and basic structural components.			
	Types of loads and load combinations as per IRC Codes.			
	Hydraulic design of bridges: Scour depth, afflux, and waterway			
	requirements. Overview of bridge sub-structures.			
2.	Design of RCC Culverts:	12		
	Types of culverts and their functional aspects.			
	Design of RCC slab culverts considering IRC loadings.			
3.	Design of Bridge Deck Slabs:	11		
	Analysis and design of RCC bridge deck slabs.			
	Courbon's Method for load distribution in bridge decks.			
4.	Design of Plate Girder Bridges:	10		
	Introduction to plate girder bridges.			
	Design of main girders, stiffeners, and cross-bracing.			
	Shear and moment calculations in plate girders.			

COURSE OUTCOMES				
CO 1.	Understand bridge types, components, and loading conditions.			
CO 2.	Analyze and design RCC slab culverts.			
CO 3.	Design bridge deck slabs using standard methods.			

Design plate girder bridges, considering shear, bending, and stiffening requirements. CO 4.

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Design of Bridges	Johnson Victor.				
2.	Design of Bridges	Krishna Raju.				
3.	Relevant IRC & IS Codes.	IRC & IS CODES				

PROGRAMME	ROGRAMME B.Tech Civil Engineering (Regular)					
SEMESTER		8 th				
COURSE TITLE	E	Pre-St	ressed	Concret	e	
COURSE CODE		CIV-4	51-E			
COURSE CATEGORY Professional Elective Course				Course (PEC)		
ELECTIVE TRA	Structural Engineering					
	·					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1	0	0	45	

COURSE OBJECTIVES				
1.	Understand the principles and concepts of pre-stressed concrete construction.			
2.	Develop the ability to design and analyze pre-stressed concrete structures.			
3.	Gain knowledge of different pre-stressing methods and their applications			

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	Introduction to Pre-Stressed Concrete:	11
	Overview of Pre-Stressed concrete as a construction material.	
	Historical development and advantages of Pre-Stressed concrete.	
	Basic principles of Pre-Stressing.	
2.	Pre-Stressed Concrete Design:	12
	Design philosophy and safety considerations in Pre-Stressed	
	concrete.	
	Analysis and design of Pre-Stressed concrete members: beams,	
	slabs, and columns.	
	Design of Pre-Stressed concrete bridges.	
3.	Pre-Stressing Methods :	12
	Introduction to different Pre-Stressing methods: pre-tensioning	
	and post-tensioning.	
	Applications and advantages of each Pre-Stressing method.	
_	Case studies of Pre-Stressed concrete projects.	
4.	Practical Applications:	10
	Design projects involving Pre-Stressed concrete structures.	
	Real-world engineering challenges in Pre-Stressed concrete	
	design.	
	Group projects to design and analyze Pre-Stressed concrete	
_	structures	
5.	Introduction to Pre-Stressed Concrete:	11
	Overview of Pre-Stressed concrete as a construction material.	
	Historical development and advantages of Pre-Stressed concrete.	
	Basic principles of Pre-Stressing.	

COURSE OUTCOMES				
CO 1.	Explain the principles and concepts of pre-stressed concrete construction.			
CO 2.	Design and analyze pre-stressed concrete structures			
CO 3.	Describe different pre-stressing methods and their applications.			

TEXT BOOKS/REFERENCES					
S. No	Book/Text Title				
1.	Nilson, A. H., Darwin, D., & Dolan, C. W. (2015). Design of Pre-stressed Concrete				
	(3rd ed.). Wiley.				
2.	PCI (Precast/Pre-stressed Concrete Institute). (2016). PCI Design Handbook:				
	Precast and Pre-stressed Concrete (8th ed.). PCI.				
3.	ACI Committee 318. (2014). Building Code Requirements for Structural				
	Concrete (ACI 318-14) and Commentary. American Concrete Institute				

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		3rd				
COURSE TITLE	[Introd	luction	to Geote	echnical Engineering	
COURSE CODE		CIV-2	07-Е			
COURSE CATE	GORY	Professional Elective Course (PEC)				
ELECTIVE TRA	CK	Geo-Technical Engineering				
	·					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T P S		S	TOTAL NO. OF CONTACT HOURS	
3	2	1 0 0 45				

	COURSE OBJECTIVES				
1.	Understand the basic principles and applications of soil mechanics in civil				
	engineering.				
2.	Familiarize with simple soil testing methods and their practical uses.				
3.	Learn the significance of soil behavior in construction projects.				
4.	Prepare for site-related decision-making and advanced geotechnical courses.				

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	Introduction to Soil Mechanics and Soil Classification:	12
	Importance of soil in civil engineering projects.	
	Types of soils, their origin, and field identification.	
	Soil properties: Water content, density, void ratio. Simple soil.	
	Classification and application in projects.	
2.	Soil Moisture, Permeability, and Seepage (Field	8
	Applications):	
	Role of water in soil strength and stability.	
	Practical understanding of permeability and seepage.	
	Applications in drainage and water control in construction.	
3.	Soil Compaction and its Practical Importance:	8
	Purpose and field techniques of compaction.	
	Proctor test concept and optimum moisture content.	
	Compaction in earthworks, roads, and embankments.	
4.	Shear Strength, Bearing Capacity & Settlement	10
	(Introduction):	
	Introduction to soil strength, failure concepts.	
	Field testing methods like direct shear test (conceptual).	
	Settlement impact on structures and its control.	
5.	Earth Pressure, Slopes, and Site Investigation Basics:	7

Application of earth pressure concepts in retaining structures.	
Slope stability issues and basic prevention methods.	
Simple soil exploration methods, SPT introduction.	

	COURSE OUTCOMES					
CO 1.	Classify soil types and basic physical properties.					
CO 2.	Perform simple field and lab tests for soil behaviour assessment.					
CO 3.	Understand the importance of permeability, compaction, and strength in					
	construction.					
CO 4.	Apply basic geotechnical knowledge in field applications like earthworks and					
	foundations.					

TEXT BOOKS/REFERENCES				
S. No	Book/Text Title			
1.	B.C. Punmia et al., "Soil Mechanics and Foundations", Laxmi Publications.			
2.	Gopal Ranjan & A.S.R. Rao, "Basic and Applied Soil Mechanics", New Age			
	International.			
3.	V.N.S. Murthy, "Soil Mechanics and Foundation Engineering", CBS Publishers.			

PROGRAMME		B.Tecl	n Civil l	Engineer	ring (Regular)
SEMESTER		4th			
COURSE TITLE	3	Engin	eering	Geology	and Seismology
COURSE CODE		CIV-2	56-E		
COURSE CATEGORY		Professional Elective Course (PEC)			
ELECTIVE TRACK		Geo-Technical Engineering			
	CREDITS AND CONTACT HOURS				
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS
3	2	1	0	0	45

	COURSE OBJECTIVES
1.	Geological considerations in the design of tunnels, dams, and buildings
2.	To provide a coherent development to the students for the courses in the sector of
	earthquake engineering
3.	To present the foundations of many basic engineering concepts related to earthquake
	Engineering
4.	To give experience in the implementation of engineering concepts that are applied in
	the field of earthquake engineering

COURSE CONTENT				
Units	Description	Cont. Hours		
1.	Geology and its relevance to civil engineering, Structural	12		
	Geology; Folds, Faults and Mechanism of Faulting, Joints,			
	Unconformities.			
2.	Engineering Geology; geological considerations in tunnels, dams,	8		
	bridges, building sites; landslides.			
3.	Earthquakes; types and causes, distribution in the world, basic	8		
	definitions, seismic zones.			
4.	Engineering Seismology (Definitions), Introduction to Seismic	10		
	Hazards and Earthquake Phenomenon. Geographical			
	Distribution of Earthquakes and Seismo-techtonics.			
5.	Earthquake recording instruments, Warning systems, Global	7		
	network, Monitoring of Earthquake.			

	COURSE OUTCOMES
CO 1.	Show an understanding of the physical properties used to identify Earth materials.
CO 2.	Show an understanding of the geomorphic processes that modify the Earth's surface.

CO 3.	Examine the various geological engineering problems faced in the design of dams,
	tunnels, and buildings.
CO 4.	Gain experience in Earthquake Engineering's implementation of engineering concepts
	applied in the field of Structural Engineering.
CO 5.	Learn to understand the theoretical and practical aspects of earthquake engineering.

TEXT BOOKS/REFERENCES				
S. No	Book/Text Title			
1.	Engineering Geology by Parbin Singh			
2.	Physical Geology by Arthur Holmes			
3.	Engineering Geology by F.G. Bell			
4.	Engineering Seismology by PN Aggarwal			
5.	An introduction to Seismology, Earthquakes & Earth Structures by Sethstein &			
	Michael Wysession			

PROGRAMME		B.Tecl	ı Civil I	Engineer	ring (Regular)
SEMESTER		5th			
COURSE TITLE	<u> </u>	Geote	chnical	Applica	tions in Construction
COURSE CODE		CIV-3	07-Е		
COURSE CATEGORY		Professional Elective Course (PEC)			
ELECTIVE TRACK		Geo-Technical Engineering			
	CREDITS AND CONTACT HOURS				
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS
3 2		1	0	0	45

	COURSE OBJECTIVES
1.	Understand the practical geotechnical aspects involved in construction projects.
2.	Identify simple ground improvement techniques and construction challenges related
	to soil.
3.	Recognize the role of geotechnical inputs in roads, foundations, and earthworks.
4.	Assess soil-related construction problems and propose basic field solutions.
5.	Develop an understanding of geotechnical needs in common infrastructure projects.
	2 / 5 The 12 / 15 / 15 / 15 / 15 / 15 / 15 / 15 /

	COURSE CONTENT	
Units	Description	Cont. Hours
1.	Geotechnical Inputs in Construction Projects:	12
	Importance of geotechnical studies, soil reports, bore logs, water	
	table effects, and basic field tests.	
2.	Ground Preparation and Earthworks:	8
	Earthwork planning, compaction methods, dewatering,	
	challenges during earthworks, and subgrade preparation.	
3.	Ground Improvement Techniques:	8
	Compaction, sand replacement, stone columns, Geosynthetics,	
	stabilization methods, and field applications.	
4.	Foundation Systems - Construction Perspective:	10
	Overview of shallow and deep foundations, site issues, quality	
	checks, and examples from infrastructure projects.	
5.	Retaining Structures, Slope Stability, and Construction	7
	Challenges:	
	Basics of earth pressure, retaining structures, slope failures, soil	
	nails, gabions, and geotechnical failures case studies.	

COURSE OUTCOMES					
CO 1.	Explain the relevance of geotechnical investigations in construction projects.				

CO 2.	Identify simple ground improvement methods used in construction.					
CO 3.	Understand basic foundation systems and field issues during execution.					
CO 4.	Recognize common soil-related problems in infrastructure projects.					
CO 5.	Apply practical geotechnical knowledge to real-world construction scenarios.					

	TEXT BOOKS/REFERENCES									
S. No	S. No Book/Text Title Author									
1.	Analytical & computational Methods in Engineering	Brown, E.T, CBS Publishers &								
	Rock Mechanic	Distributors, New Delhi								
2.	Introduction to Rock Mechanics	Godman, P.E., John Wiley, 1989.								

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		6th				
COURSE TITLE	<u> </u>	Rock	Mechar	nics & Tu	nneling Technology	
COURSE CODE		CIV-3	57-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Geo-Technical Engineering				
CREDITS AND CONTACT HOURS						
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1	0	0	45	

	COURSE OBJECTIVES						
1.	To understand the formation of Rock, Classification, characterization, etc.						
2.	To learn about the stability of rock slopes.						
3.	To understand the factors governing the selection of type and location of the tunnels.						
4.	To gain a comprehensive understanding of the planning and design of Tunnels.						
5.	To learn the construction practices and the associated challenges.						

	COURSE CONTENT								
Units	Units Description Description								
1.	Introduction, terminology, Rock classification systems, physical &	10							
	Mechanical properties of rocks, laboratory testing, stability of rock								
	slopes, Rock bolting.								
2.	Introduction, Classification of tunnels. Survey for a tunnel project.	9							
3.	Methods of Tunnelling in soft & hard rock. Methods of rock blasting	10							
	in tunnels.								
4.	Tunnel services in rock tunnels, ventilation, drainage, and lighting.	6							
5.	Lining of tunnels in soft grounds methods and types, tunnel supports	10							
	for weak rocks including rock bolting.								

	COURSE OUTCOMES							
CO 1.	CO 1. Competence in Rock Mass Characterization							
CO 2.	CO 2. Competence in deciding the location of tunnels, type of tunnels and method of							
	tunnelling.							
CO 3.	CO 3. Ability to analyse different components of the Tunnels and tunnel support systems.							

	TEXT BOOKS/REFERENCES								
S. No	S. No Book/Text Title								
1.	Chopra, A. K. (2014). Dynamics of Structures: Theory and Applications to								
	Earthquake Engineering (5th ed.). Pearson.								
2.	Clough, R. W., & Penzien, J. (2003). Dynamics of Structures (3rd ed.). McGraw-Hill								
	Education.								
3.	. Ghali, A., & Neville, A. M. (2015). Structural Analysis: A Unified Classical and Matrix								
	Approach (6th ed.). CRC Press								

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		7th					
COURSE TITLE	<u> </u>	Geoen	vironn	nental Er	ngineering		
COURSE CODE		CIV-406-E					
COURSE CATEGORY		Professional Elective Course (PEC)					
ELECTIVE TRACK		Geo-Technical Engineering					
CREDITS AND CONTACT HOURS							
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3	2	1	0	0	45		

COURSE OBJECTIVES							
1.	Understand the fundamentals of Geoenvironmental engineering and the interaction of						
	soil, water, and environmental factors with a focus on waste management and its environmental impact.						
2.	Study the geotechnical utilization of various waste materials and understand site selection parameters and regulations for waste disposal facilities.						
3.	Learn about landfill design, layout, and the function of components such as liners and cover systems, including soil selection and construction methods.						
4.	Understand the design and management of leachate and gas collection systems and explore the use of Geosynthetics in landfill engineering.						
5.	Learn various soil investigation and remediation techniques for managing contaminated sites, including physical, chemical, biological, and electro kinetic methods.						

	COURSE CONTENT								
Units	Description	Cont. Hours							
1.	Introduction and Soil-water-environment interaction: Introduction to Geoenvironmental, Engineering, Soil-water-environment interaction relating to geotechnical problems, Waster-source, classification and management of waste, Physical, chemical and geotechnical characterization of municipal solid waste, Impact of waste dump and its remediation	12							
2.	Geotechnical application of waste and disposal: Geotechnical use of different types such as Thermal power plant waste, MSW, mine waste, industrial waste. Waste disposal facilities, Parameters controlling the selection of site for sanitary and industrial landfill. Site characterization. MoEF guidelines.	12							
3.	Landfill Components: Landfill layout and capacity, components of landfill and its functions. Types and functions of liner and cover systems, Compacted clay liner, selection of soil for liner, methodology of construction.	8							
4.	Leachate, Gas Management and Geosynthetics: Management of Leachate and gas. Various components of leachate collection and removal system and its design. Gas disposal/utilization. Closure and	7							

....

	post closure monitoring system Geosynthetics- Geo-membranes - Geosynthetics clay liners -testing and design aspects.	
5.	Soil remediation: Investigation of contaminated soil, sampling, assessment Transport of contaminants in saturated soil. Remediation of contaminated soil-in-situ / exit remediation, bio remediation, thermal remediation, pump and treat method, phytoremediation and electro-kinetic remediation.	6

	COURSE OUTCOMES		
CO 1.	Students will be able to explain soil-water-environment interaction and assess the		
	impact of various types of waste dumping on geotechnical problems and the environment.		
CO 2.	Students will be able to evaluate the suitability of waste materials for geotechnical applications and analyze site selection criteria for landfills based on environmental guidelines.		
CO 3.	Students will be able to design landfill components including liner systems and		
	determine the appropriate construction methodology and soil requirements for		
	effective containment.		
CO 4.	Students will be able to design leachate and gas management systems and select		
	suitable Geosynthetics for landfill applications to ensure environmental safety.		
CO 5.	Students will be able to investigate contaminated soils and recommend appropriate		
	remediation techniques		

TEXTBOOK REFERENCES			
1.	Daniel, D.E. (1993). Geotechnical Practice for Waste Disposal. Chapman, and Hall,		
	London.		
2.	Koerner, R.M. (2005). Designing with Geosynthetics. Fifth Edition. Prentice Hall, New		
	Jersey.		
3.	Dr. G V Rao and Dr. R S Sasidhar (2009) Solid waste Management and Engineered		
	Landfills, Saimaster Geoenvironmental Services Pvt. Ltd. Publication.		
4.	Reddi L.N and Inyang HI (2000) Geoenvironmental Engineering: Principles and		
	Applications, Marcel Dekker Inc Publication		
5.	Ayyar TSR (2000) Soil engineering in relation to environment, LBS center for Science		
	and Technology, Trivandrum.		

D | 1440

PROGRAMME B.Tech				Engineer	ring (Regular)		
SEMESTER		8 th					
COURSE TITLE	2	Groun	ıd Impr	ovemen	t Techniques		
COURSE CODE		CIV-4	52-E				
COURSE CATE	Professional Elective Course (PEC)						
ELECTIVE TRA	CK	Geo-Technical Engineering					
	'						
	CREDITS AND CONTACT HOURS						
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
31	2	1	0	0	45		

	COURSE OBJECTIVES					
1.	To introduce students to the challenges posed by problematic soils and the need for ground improvement techniques.					
2.	To familiarize students with various mechanical ground improvement methods and					
	their practical applications.					
3.	To develop an understanding of seepage control and dewatering techniques in the field.					
4.	To expose students to physical, chemical, and thermal modification methods such as					
	grouting, concreting, and guniting.					
5.	To impart knowledge about specialized techniques like ground anchoring, rock bolting,					
	and soil nailing for ground stabilization.					

	COURSE CONTENT					
Units	Experiments	Cont. Hours				
1.	Introduction: Soil Types, Soil Investigation & Classification, Ground Modification/Stabilization, Need for Engineered Ground Improvement, Classification of Ground Improvement Techniques, Suitability, Feasibility and Desirability of Ground Improvement Techniques, Current & Future Developments.	7				
2.	Ground Improvement Techniques Mechanical Modification: Introduction to Mechanical Modification, Principles of Soil Densification, Properties of Compacted Soil, Compaction Control, Specification of Compaction, Requirements, Types of Compaction Equipment.	10				
3.	Hydraulic Modification: Objectives & Techniques, Dewatering Systems, Soil-Water Relationships, Single& Multiple-Well Formulas, Drainage of Slopes, Filtration & Seepage Control, Preloading & Vertical Drains, Electro kinetic Dewatering & Stabilization.	8				
4.	Chemical Modification/Stabilization: Effect of various admixtures on Engineering Properties of Soils such as Cement, Lime, Fly ash, Bitumen, Cement Lime Fly ash. Other chemical additives such as NaCL, CaCL2, CaSO4, Ca (OH)2,	10				

Page | 11

	NaOH etc., Grouting- Applications to Embankments,				
	Foundations& Sensitive Soils, Admixtures in Pavement Design.				
5.	Thermal Modification:	10			
	Thermal Properties of Soils, Heat Treatment of Soils, Ground				
	Freezing, Strength & Behaviour of Frozen Ground. Modification By				
	Inclusions & Confinement: Evolution of Soil Reinforcement,				
	Applications of Geosynthetics Material in Civil Engineering, Soil				
	Nailing, Soil Anchors, Soil Confinement by Formwork.				

	COURSE OUTCOMES					
CO 1.	Analyze the field problems related to problematic soils and solve the problems using					
	the ground improvement techniques.					
CO 2.	Summarize and practice ground improvement using Mechanical modification					
	techniques.					
CO 3.	Design drainage for seepage control, assess dewatering field problems.					
CO 4.	Application of physical and chemical ground improvement techniques using thermal					
	modification, like grouting, shotcreting and guniting technology.					
CO 5.	Demonstrate the ground improvement techniques such as ground anchors, rock bolting					
	and soil nailing.					

TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author			
1.	Methods of Treatment of Unstable Ground	Belt – Butterworths, 1975			
2.	Engineering Principles of Ground Modification	Manfired, R. H.			
3.	Engineering Treatment of Soils	Bell, F. G			
4.	Geosynthetics for Soil Improvement	ASCE, GST No. 18,New York			
5.	Grouting Theory & Practice IUST	Nonveiller, E			
6.	Soil Stabilization	Ingles, O. G. &Metcalf, J. B			

PROGRAMME	B.Tech Civil Engineering (Regular)						
SEMESTER		3 rd					
COURSE TITLE	2	Intro	duction	n to Gre	en Technology		
COURSE CODE	COURSE CODE CIV-208-E						
COURSE CATE	GORY	Professional Elective Course (PEC)					
ELECTIVE TRA	CK	Environmental Engineering					
	CREDITS AND CONTACT HOURS						
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3	2	1	0	0	45		

	COURSE OBJECTIVES						
1.	Understand the basic concepts, significance, and need for green technology in						
	addressing global environmental challenges.						
2.	Explore sustainable materials and renewable resources to minimize environmental						
	impacts.						
3.	Learn various green energy systems and energy conservation technologies for						
	sustainable development.						
4.	Gain knowledge of waste management strategies and pollution control techniques for						
	environmental protection.						

COURSE CONTENT					
Units	Topic	Cont. Hours			
1.	Introduction to Green Technology:	8			
	Definition, scope, and significance of green technology.				
	Global environmental issues and need for green technology.				
	Overview of renewable energy, waste minimization, and pollution				
	control technologies.				
2.	Green Materials and Sustainable Resources:	8			
	Sustainable materials and renewable resources.				
	Recycling, reuse, and life-cycle of materials.				
	Eco-friendly building materials and technologies.				
3.	UNIT 3: Green Energy Systems:	9			
	Renewable energy sources: solar, wind, hydro, biomass,				
	geothermal.				
	Energy-efficient technologies.				
	Smart grids and energy conservation techniques.				
4.	Waste Management and Pollution Control:	10			
	Waste minimization and management strategies.				
	Solid waste, e-waste, hazardous waste management.				
	Air, water, and soil pollution control technologies.				
5.	Applications and Future of Green Technology:	10			
	Green buildings and sustainable urban planning.				
	Green transportation and agriculture.				

Future trends, government initiatives, and green policies.

	COURSE OUTCOMES						
CO 1.	Explain the importance, principles, and scope of green technology in solving						
	environmental problems.						
CO 2.	Select and recommend sustainable materials and renewable resources for various applications.						
CO 3.	Describe different green energy systems and evaluate their impact on sustainability.						
CO 4.	Analyze waste management practices and pollution control technologies used in green						
	solutions.						
CO 5.	Evaluate green technology applications in sectors like buildings, transportation,						
	agriculture, and predict future developments.						

TEXT BOOKS/REFERENCES						
S. No	Book/Text Title					
1.	Rao, P.K Introduction to Green Technologies					
2.	Kibert, C.J Sustainable Construction: Green Building Design and Delivery					
3.	USGBC - LEED Reference Guide for Green Building					
4.	Sharma, B.K Environmental Chemistry					
5.	Haapio, A., & Viitaniemi, P Environmental Impact Assessment Review					

Page | 120

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		4 th					
COURSE TITLE	2	Environmental Pollution and Control					
COURSE CODE CIV-257-E							
COURSE CATE	GORY	Professional Elective Course (PEC)					
ELECTIVE TRA	CK	Environmental Engineering					
	CREDITS AND CONTACT HOURS						
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3	2	1	0	0	45		

	COURSE OBJECTIVES				
1.	Understand the fundamental concepts of environmental pollution and its types.				
2.	Study the effects of pollutants on environment and health.				
3.	Learn techniques and systems for pollution control.				
4.	Understand waste management, noise, and thermal pollution control.				
5.	Familiarize with environmental laws, regulations, and sustainable development				
	practices.				

	COURSE CONTENT	
Units	5 Topic	Cont. Hours
1.	Introduction to Environmental Pollution:	9
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Definition and classification of pollution.	
	Sources and effects of various pollutants (air, water, soil, noise,	
	thermal, radioactive).	
	Impact of pollution on human health and ecosystems.	
	Introduction to environmental sustainability and global concerns	
	(Climate change, ozone depletion).	
2.	Air Pollution and Control:	9
	Sources and types of air pollutants.	
	Effects of air pollution on health, vegetation, materials, and climate.	
	Air quality standards (NAAQS) and air quality index (AQI).	
	Air pollution control devices: Settling chambers, Cyclone	
	separators,	
	Filters, ESP, Scrubbers.	
	Vehicular pollution and control measures.	_
3.	Water Pollution and Control:	9
	Sources and classification of water pollutants.	
	Effects of water pollution on environment and health.	
	Water quality standards (IS codes).	
	Wastewater treatment: Primary, Secondary, and Tertiary methods.	
	Introduction to CETP and STP (Common Effluent and Sewage	
	Treatment Plants).	

4.	Solid Waste, Soil, Noise, and Thermal Pollution:	9
	Types and sources of solid waste (municipal, industrial, hazardous,	
	e-waste, biomedical waste).	
	Methods of collection, transportation, and disposal of solid waste.	
	Land/soil pollution causes and control measures.	
	Noise pollution: Sources, effects, measurement, and control	
	methods.	
	Thermal pollution: Causes, effects, and control.	
5.	Environmental Management, Laws, and Sustainable Practices:	9
	Environmental policies and acts: Water Act, Air Act, Environment	
	Protection Act (EPA), 1986.	
	Role of regulatory agencies (CPCB, SPCBs).	
	Environmental Impact Assessment (EIA): Basics and process	
	Climate change and global protocols (Kyoto, Paris Agreement).	
	Introduction to sustainability, green technology, and the 3R concept	
	(Reduce, Reuse, And Recycle).	

	COURSE OUTCOMES
CO 1.	Classify different types of pollution and identify major sources.
CO 2.	Analyze environmental and health impacts of various pollutants.
CO 3.	Suggest appropriate pollution control measures for air, water, and land.
CO 4.	Recommend proper waste management techniques and noise mitigation measures.
CO 5.	Interpret environmental policies, acts, and standards relevant to pollution control.

TEXT BOOKS/REFERENCES				
S. No	Book/Text Title			
1.	C.S. Rao, Environmental Pollution Control Engineering, Wiley Eastern Ltd.			
2.	Peavy, Rowe, and Tchobanoglous, Environmental Engineering, McGraw Hill.			
3.	Garg, S.K., Environmental Engineering Vol. I & II, Khanna Publishers.			
4.	CPCB Guidelines and MoEFCC Reports			

D 1422

PROGRAMME		B.Tecl	h Civil l	Engineer	ing (Regular)	
SEMESTER		5 th				
COURSE TITLE	2	Solid	Waste	Manage	ement	
COURSE CODE		CIV-3	08-Е			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Environmental Engineering				
CREDITS AND CONTACT HOURS						
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45	

	COURSE OBJECTIVES
1.	To develop required skills in the students to acquire the following competency: Plan
	segregation, collection, transportation, recycling, and disposal of municipal solid waste
	so that its impact is minimal on the environment, economy and community.

	COURSE CONTENT	
Units	Topic	Cont. Hours
1.	Sources and Composition of Municipal Solid Waste:	4
	Sources of solid waste. Types of solid waste. Characteristics of Solid	
	waste, composition of solid waste and its determination.	
2.	Properties of Municipal Solid Waste :	6
	Physical properties of Municipal Solid Waste, Chemical properties of	
	Municipal Solid Waste, Biological properties of Municipal Solid	
	Waste and Transformation of Municipal Solid Waste.	
3.	Solid Waste Generation and Collection:	6
	Quantities of Solid Waste, Measurements, and methods to measure	
	solid waste quantities. Solid waste generation and collection, Factors	
	affecting solid waste generation rate, Quantities of materials	
	recovered from MSW.	
4.	Handling, Separation, and Storage of Solid Waste:	_
	Handling and separation of solid waste at site. Material separation	7
	by pick in, screens, float and separator magnets, and	
	electromechanical separator, and other latest devices for material	
	separation. Waste handling and separation at Commercial and	
	industrial facilities. Storage of solid waste at the sources.	
5.	Processing and disposal of Solid Waste:	7
	Processing of solid waste at residence e.g. Storage, conveying,	
	compacting, Shredding, pulping, granulating etc. Combustion and	
	energy recovery of municipal solid waste, effects of combustion,	
	undesirable effects of Combustion, Landfill: Classification, planning,	
	sitting, permitting, landfill processes, landfill design, landfill	
	operation, use Of old landfill, Differentiate sanitary land fill and	
	incineration as final disposal system for solid waste, Biochemical	

processes: Methane generation by anaerobic digestion, composting and other biochemical Processes.

	COURSE OUTCOMES		
CO 1.	Explain municipal solid waste management systems to their physical properties and		
	associated critical considerations in view of emerging technologies		
CO 2.	Outline sources, types and composition of so lid waste with methods of handling,		
	sampling and storage of solid waste.		
CO 3.	Select the appropriate method for solid waste collection, transportation and		
	redistribution.		
CO 4.	Describe methods of disposal of municipal solid waste.		

	TEXT BOOKS/REFE	ERENCES
S. No	Book/Text Title	Author
1.	Solid Waste Technology & Management	Christensen, H. T. Wiley, 2010, Volume 1 & 2.
2.	The Practical Handbook of Compost Engineering	Haug, T. R, Lewis Publishers, 1993.
3.	Landfill Bioreactor Design & Operation,	Reinhart, R. D. and Townsend, G. T., CRC Press, 1997, 1st Edition.
4.	Handbook Of Solid Waste Management	4Tchobanoglous, G. and Kreith, F., McGraw Hill, 2002, 2nd Edition.
5.	Integrated Solid Waste Management:	Tchobanoglous, G., Theisen and Vigil,
	Engineering Principles and Management Issues	Issues, McGraw Hill, 1993.
6.	Manual on Municipal 1 Solid waste Management IUST	CPHEEO, Ministry of Urban Development, Govt. Of. India, New Delhi, 2000.

PROGRAMME	B.Tecl	n Civil I	Engineer	ring (Regular)		
SEMESTER		6 th				
COURSE TITLE]	Clima	te Chan	ge: Impa	acts, Adaptation, and Resilience in Civil Engineering	
COURSE CODE		CIV-3	58-E			
COURSE CATEGORY		Profes	sional	Elective	Course (PEC)	
ELECTIVE TRACK		Envir	onment	tal Engin	eering	
	·					
	CREDITS AND CONTACT HOURS					
CREDITS L		T	P	S	TOTAL NO. OF CONTACT HOURS	
3	3 2 1 0 0 45		45			

	COURSE OBJECTIVES
1.	To understand climate change science, international frameworks, and their relevance
	to civil engineering.
2.	To analyse the vulnerability of civil infrastructure to various climate change effects.
3.	To explore engineering design and adaptation strategies enhancing climate resilience
	of civil infrastructure.
4.	To study sustainable materials, green technologies, and tools aiding low-carbon
	infrastructure.
5.	To introduce codes, policies, and upcoming technologies promoting climate resilience
	in civil projects.

	COURSE CONTENT					
Units	7 Topic	Cont. Hours				
1.	Introduction to Climate Change and Civil Engineering:	10				
	Basics of Climate Science: Carbon cycle, Greenhouse effect, Global warming Climate Change Evidence: IPCC Reports, global and regional trends of climate variables, accelerated glacial melt, sea level rise, Civil Engineering sectors impacted by climate change Overview of International Policies: UNFCCC, Paris Agreement, Kyoto Protocol. National Action Plans on Climate Change (NAPCC) and relevance to infrastructure. Climate risk assessment framework for civil engineers					
2.	Climate Projections: Changes in Atmospheric Constituents and Radiative Forcing Global Climate Models Representative Concentration Pathways Climate Projections - Global and Regional	7				
3.	Impacts of Climate Change on infrastructure: Vulnerabilities of different infrastructure types: Transportation, Buildings, Energy Systems, Water Systems Material degradation under changing climate conditions	8				

	Coastal and marine infrastructure challenges	
	Impact on construction activities and safety	
4.	Climate Change Adaptation Strategies in Civil Engineering	10
	Concepts of resilience, mitigation and adaptation	
	Climate resilient development	
	Engineering solutions for climate adaptation	
	Flood-proofing, heat stress management, green roofs	
	Retrofitting and rehabilitation for resilience	
	Smart cities and climate-resilient planning	
5.	Policy Frameworks, Codes.	10
	Global and national policy initiatives	
	Climate change in design codes and standards	
	Disaster risk reduction frameworks	
	International cooperation and Finances	

	COURSE OUTCOMES					
CO 1.	Students will be able to explain climate change mechanisms and identify civil					
	engineering sectors affected.					
CO 2.	Students will evaluate climate-related risks to different infrastructure systems and					
	materials.					
CO 3.	Students will propose suitable adaptation techniques for climate-resilient					
	infrastructure projects.					
CO 4.	Students will assess and recommend eco-friendly materials and green infrastructure					
	for civil engineering use.					
CO 5.	Students will interpret climate change-related policies, design standards, and future					
	trends in the field.					

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Climate Adaptation Engineering: Risks and Solutions	Juan A. Blanco, Houshang Kheradmand				
2.	Infractruature Deciliones to Climate Change					
۷.	Infrastructure Resilience to Climate Change	Sreevalsa Kolathayar, Ashok Kumar				
3.	Sustainable Construction Materials and Technologies	Yoon-Moon Chun, S. Nagataki				
4.	Green Infrastructure: Linking Landscapes and	Mark A. Benedict, Edward T.				
	Communities	McMahon				

PROGRAMME	B.Tecl	n Civil I	Engineer	ring (Regular)		
SEMESTER		7 th				
COURSE TITLE		Social	l and E	nvironn	nental Impact Assessment	
COURSE CODE		CIV-4	07-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Environmental Engineering				
	CREDITS AND CONTACT HOURS					
CREDITS	CREDITS L T P S			S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45	

	COURSE OBJECTIVES
1.	To gain knowledge about different types of environmental pollution and their control
	measures.
2.	Understand the pollution monitoring aspects of air, soil, water, and noise pollution.
3.	Know about Environmental audit and Environmental Impact Assessment.

	O ANCEMENT A	
	COURSE CONTENT	
Units	Z Topic 1	Cont. Hours
1.	Environment and Pollution: Basic ideas of environment, basic concepts, man, society & environment, their interrelationship Air Pollutants: Types, Sources, Effects; Air Pollution Meteorology: Lapse Rate, Inversion. Engineered Control of Air Pollutants. Definition of noise, effect of noise pollution, noise classification, Noise pollution control.	7
2.	Water and Soil Pollution: Methods of monitoring and control of water, soil Pollution; effects of pollution on plants, animals and Human beings. Sources, measurement, Effects, and control of Soil pollution.	6
3.	Global Environmental Issues: Green House Effect, Global Warming, Acid Rain, Ozone Layer Depletion, Nuclear Accidents, and Holocaust.	4
4.	Environmental Impact Assessment: Environmental laws and protection act of India, Definition, significance, and scope of impact assessment, Need & objective, types of environmental impacts, methods of environmental impacts, major steps in the impact assessment procedure, generalized approach to impact analysis, social impact assessment.	7
5.	Environmental audit: Recent trends in industrial waste management, Cradle to grave concept, Life cycle analysis, Clean technologies; Environmental audit:	6

	Definition and concepts, Environmental audit versus accounts audit,						
Compliance audit, Relevant methodologies, Various pollution							
regulations, Introduction to ISO and ISO 14000.							

	COURSE OUTCOMES
CO 1.	Aware and sensitise about the present days environmental issues at global and local
	scale.
CO 2.	Get acquainted with environmental and social impacts of any developmental activity.
CO 3.	Awareness of pollution monitoring aspects of air, soil, water and noise pollution.
CO 4.	Knowledge about environmental impact assessment with its objectives and
	procedure.

	TEXT BOOKS/REFERENCES	
S. No	Book/Text Title	Author
1.	Environmental Engineering: A Design Approach	A. Sincero, G. Sincero PHI
2.	Environmental Engineering	P. V. Rowe TMH
3.	Environmental Engineering	S.K . Garg, Khanna Publishers
4.	Air Polution Rao and Rao TMH 4 Water Supply, Waste	, A.K.Chatterjee Khanna
	Disposal and Environmental Pollution Engineering	Publishers
5.	Environmental Engineering, Vol.II	Rajagopalan Oxford
	15/ X 11(C) \5\	University Press.

TUST

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		8 th				
COURSE TITLE		Susta	inable	Enviror	nmental Practices and Quality Control	
COURSE CODE		CIV-2	53-Е			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Environmental Engineering				
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2 1 0 0 45		45				

	COURSE OBJECTIVES			
1.	To impart knowledge of sustainable environmental practices and the importance of			
	resource conservation in environmental engineering projects.			
2.	To familiarize students with various types of pollution, control measures, and			
	sustainable treatment technologies.			
3.	To develop an understanding of quality control, monitoring, and environmental			
	management systems in engineering projects.			
4.	To introduce students to sustainable construction materials, techniques, and their cost-			
	benefit analysis for infrastructure development.			
5.	To expose students to recent innovations, global case studies, and future trends in			
	environmental sustainability and the role of civil engineers in sustainable development.			

	COURSE CONTENT				
Units	Topic	Cont. Hours			
1.	Introduction to Sustainable Environmental Practices:	10			
	Concept and Need for Sustainability in Environmental Engineering. Sustainable Development Goals (SDGs) and Environmental Protection. Resource Conservation: Energy, Water, and Raw Materials. Waste Minimization and Recycling Principles. Green Building Concepts and Sustainable Construction Practices.				
2.	Environmental Pollution and Control Measures:	12			
	Air, Water, Soil, and Noise Pollution: Sources and Impacts. Pollution Control Strategies and Technologies. Sustainable Wastewater Treatment and Reuse. Solid Waste Management: Segregation, Recycling, and Composting. Sustainable Transportation Systems. Environmental Legislations and Guidelines (National and International Perspectives).				
3.	Quality Control in Environmental Engineering Projects:	08			
	Quality Control and Quality Assurance (QC & QA) Concepts. Material Quality Standards in Environmental Projects. Monitoring Tools and Techniques for Air, Water, and Soil Quality. Laboratory and Field				

Pag

	Testing Methods. ISO Standards and Environmental Management	
	Systems (EMS). Risk Assessment and Environmental Auditing.	
4.	Sustainable Construction Materials and Techniques:	7
	Selection and Use of Eco-friendly Construction Materials. Recycled Aggregates, Fly Ash, GGBS, and Industrial By-products. Green Concrete and Sustainable Pavement Materials. Case Studies on Sustainable Material Use in Infrastructure Projects. Cost-Benefit Analysis of Sustainable vs Conventional Materials. Carbon Footprint Reduction Strategies in Construction.	
5.	Recent Innovations, Case Studies, and Future Trends:	8
	Role of IoT, AI, and Smart Systems in Environmental Quality Monitoring. Renewable Energy Applications in Environmental Practices. Global Case Studies on Successful Sustainable Projects. Climate Change Mitigation and Adaptation Practices. Role of Civil Engineers in Promoting Sustainable Development. Future Scope and Emerging Trends in Environmental Sustainability.	

	COURSE OUTCOMES
CO 1.	Explain the concept of sustainability, SDGs, and principles of circular economy in
	environmental engineering.
CO 2.	Identify sources of pollution and recommend appropriate sustainable pollution
	control and waste management strategies.
CO 3.	Apply quality control measures, environmental monitoring tools, and risk assessment
	techniques in environmental engineering projects.
CO 4.	Analyze the use of eco-friendly construction materials, green technologies, and assess
	their environmental and economic impact.
CO 5.	Evaluate recent innovations, smart systems, and global practices in environmental
	sustainability and apply them to climate change mitigation and adaptation.

	TEXT BOOKS/REFERENCES
S. No	Book/Text Title
1.	Environmental Engineering and Sustainable Design – Ram S. Gupta, CRC Press, Taylor &
	Francis Group
2.	Sustainable Construction: Green Building Design and Delivery – Charles J. Kibert, Wiley
3.	Environmental Pollution Control Engineering – C.S. Rao, New Age International
	Publishers

D 1400

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		3rd				
COURSE TITLE]	Introd	luction	to Wate	r Supply & Sanitation	
COURSE CODE		CIV-2	09-Е			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Hydrology and Water Resource Engineering				
	·					
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1	0	0	45	

	COURSE OBJECTIVES
1.	Understand the Fundamentals of Water Supply and Sanitation
2.	Analyze Water Demand, Supply, and Treatment Technologies
3.	Examine Water Distribution and Infrastructure Management
4.	Understand Sanitation Systems and Wastewater Treatment
5.	Address Environmental, Social, and Economic Aspects of Water and Sanitation
6.	Evaluate Policies, Governance, and Sustainable Development Strategies
7.	Explore Emerging Trends and Future Challenges

	COURSE CONTENT	
Units	Topic	Cont. Hours
1.	Introduction to Water Supply and Sanitation: Importance of Water Supply and Sanitation; Overview of Water Resources, Surface water: Rivers, lakes, reservoirs, Groundwater: Wells, aquifers, springs, Alternative sources: Desalination, rainwater harvesting. Waterborne Diseases and Public Health Impacts, Waterborne pathogens (bacteria, viruses, protozoa), Common diseases: Cholera, typhoid, dysentery. Global and National Policies on Water and Sanitation, UN Sustainable Development Goal 6, WHO Guidelines for Drinking Water Quality, Water laws and policies in different countries	12
2.	Water Supply Systems: Water Demand and Supply Planning, Population growth and water demand estimation, Water conservation and efficiency; Water Sources and Collection Methods, Surface water abstraction and groundwater extraction, Source protection and contamination risks (introduction only) Water Treatment Processes, Coagulation, sedimentation, filtration, Disinfection methods: Chlorination, UV, ozonation; Water Distribution Systems, Transmission and distribution networks, Storage reservoirs and pumping systems, Leakage control and non-revenue water	8
3.	Sanitation Systems and Wastewater Management: Sanitation System Types and Technologies, On-site sanitation: Pit latrines, septic tanks, dry toilets, Off-site sanitation: Sewerage systems,	8

	centralized treatment; Wastewater Collection and Conveyance, Sewer networks: Design and maintenance, Combined vs. separate sewer systems. Wastewater Treatment Processes, Primary treatment: Sedimentation and screening, Secondary treatment: Activated sludge, trickling filters, anaerobic digestion, Tertiary treatment: Filtration, nutrient removal, disinfection	
4.	Environmental and Social Aspects of Water and Sanitation: Environmental Impacts of Water Supply and Sanitation, Water pollution and ecosystem damage, Climate change effects on water resources. Sustainable Water and Sanitation Practices, Integrated Water Resource Management (IWRM), Circular economy in wastewater treatment; Social and Cultural Considerations in Sanitation, Hygiene behaviour and cultural barriers, Gender issues in sanitation access.	10
5.	Emerging Trends and Future Perspectives: Innovations in Water Supply and Treatment, Smart water management (IoT, AI, remote sensing), Membrane filtration and desalination advancements. Innovations in Sanitation and Wastewater Reuse, Decentralized wastewater treatment systems.	7

	CCIENCE
	COURSE OUTCOMES
CO 1.	Importance of water supply and sanitation in public health and environmental sustainability.
CO 2.	Evaluate Sanitation Systems and Wastewater Management
CO 3.	Assess Environmental and Social Aspects of Water and Sanitation
CO 4.	Explore Emerging Trends and Future Perspectives like examine innovations in water supply, including smart water management (IoT, AI)
CO 5.	Importance of water supply and sanitation in public health and environmental sustainability.

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Water Supply Engineering – S. K. Garg (37 th edition)				
2.	Wastewater Engineering: Treatment and Resource Recovery - Metcalf & Eddy (Revised				
	by George Tchobanoglous, Franklin L. Burton, H. David Stensel) (5 th edition)				
3.	Water Supply and Sanitary Engineering – G.S. Birdie and J.S. Birdie (9th edition)				

D. 1400

PROGRAMME		B.Tecl	h Civil l	Engineer	ing (Regular)	
SEMESTER		4 th				
COURSE TITLE]	Fluid	Mechar	nics Appl	lications in Engineering	
COURSE CODE		CIV-2	58-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Hydrology and Water Resource Engineering				
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2 1 0		0	0	45		

	COURSE OBJECTIVES
1.	Understand the basic principles of fluid mechanics and their applications in engineering.
2.	To analyze fluid behavior in various engineering systems, including pipelines, pumps, and open channels.
3.	To develop problem-solving skills related to real-world fluid mechanics applications.
4.	To introduce fundamental design considerations for hydraulic structures, fluid machinery, and transportation systems.
5.	To explore civil engineering applications of fluid mechanics in infrastructure, water resource management, and environmental engineering.

S COURSE CONTENT				
Units	Topic / S	Cont. Hours		
1.	Fundamentals of Fluid Mechanics:	12		
	Introduction to Fluids and Properties, Definition of fluids, difference			
	between liquids and gases.			
	Properties of fluids: Density, viscosity, surface tension,			
	compressibility, Basic fluid statics.			
	Pressure variation, Pascal's law, hydrostatic forces.			
	Fluid Dynamics Basics, Types of flow: Laminar vs. turbulent, steady			
	vs. unsteady	0		
2.	2. Flow Through Pipes and Ducts:	8		
	Flow in Pipes, Continuity equation and mass conservation			
	Energy losses in pipes: Major and minor losses			
	Darcy-Weisbach equation, friction factor, Moody diagram Pipe Networks and Applications, Series and parallel pipe systems,			
	Water distribution networks, Design considerations for pipelines			
3.	Open Channel Flow and Applications in Aerodynamics:	8		
J.	Introduction to Open Channel Flow, Differences between pipe flow	0		
	and open channel flow.			
	Types of flow in open channels: Uniform, varied, critical flow.			
	Basics of Aerodynamics, Drag and lift forces, Application in vehicle			
	design and wind tunnels (introduction only)			
4.	Civil Engineering Applications of Fluid Mechanics:	10		
	Flow measurement devices: Weirs, flumes			

	Hydraulic structures: Dams, spillways, culverts, Fluid Flow in Transportation Systems Water and wastewater conveyance Fluid mechanics in road drainage systems.	
5.	Environmental Engineering Applications of Fluid Mechanics: Water Supply and Distribution Systems, Design of urban water supply networks, Pressure and flow control in distribution systems. Storm water and Wastewater Management, Drainage systems and flood management, Sewer hydraulics and wastewater collection. River Engineering and Coastal Hydraulics, Sediment transport and erosion control, River training works and coastal protection structures.	7

	COURSE OUTCOMES			
CO 1.	Understand Fundamental Fluid Properties and Principles			
CO 2.	Analyze Fluid Flow in Pipes and Ducts			
CO 3.	Integrate Fluid Mechanics in Environmental Engineering Applications			
CO 4.	Examine Open Channel Flow and Aerodynamic Applications			
CO 5.	Apply Fluid Mechanics to Civil Engineering Structures and Systems			

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Fluid Mechanics (8th Edition) – Frank M. White				
2.	Fluid Mechanics and Hydraulic Machines (10th Edition) – R. K. Bansal				
3.	Hydraulics and Fluid Mechanics Including Hydraulic Machines (22nd Edition) – P. N.				
	Modi & S. M. Seth				
4.	Fluid Mechanics with Engineering Applications (10th Edition) - E. John Finnemore,				
	Joseph B. Franzini				

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		5 th				
COURSE TITLE]	Groui	ndwate	er Engin	eering	
COURSE CODE		CIV-3	09-Е			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Hydrology and Water Resource Engineering				
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45	

	COURSE OBJECTIVES				
1.	Understand the fundamentals of groundwater hydrology, including occurrence,				
	distribution, and movement.				
2.	Analyze aquifer properties and well hydraulics for water resource management.				
3.	Apply groundwater exploration techniques for site selection and development.				
4.	Evaluate groundwater quality and contamination sources to design remediation				
	strategies.				
5.	Implement sustainable groundwater management practices using modern tools and				
	models.				

	COURSE CONTENT	
Units	Topic (S)	Cont. Hours
1.	 Fundamentals of Groundwater Hydrology: Introduction to groundwater and its significance Hydrologic cycle and groundwater occurrence Types of aquifers: Confined, unconfined, and perched aquifers Groundwater movement and Darcy's Law Hydraulic conductivity, transmissivity, and storativity Groundwater flow equations and flow nets. 	12
2.	 Well Hydraulics and Aquifer Testing: Types of wells: Dug, driven, and drilled wells Well construction methods and materials Steady and unsteady flow to wells in confined and unconfined aquifers Theis, Jacob, and Cooper-Jacob methods Pumping tests: Drawdown, recovery, and step-drawdown tests Well efficiency and specific capacity calculations 	8
3.	 Groundwater Exploration and Development: Remote sensing and geophysical techniques in groundwater exploration Site selection criteria for wells and boreholes 	8

		I
	Drilling techniques: Rotary, percussion, and auger methods	
	Well design, development, and maintenance	
	Artificial recharge of groundwater and managed aquifer recharge	
	(MAR)	
4.	Groundwater Quality and Contamination:	10
	Groundwater chemistry and quality parameters	
	Natural and anthropogenic sources of contamination	
	Saltwater intrusion and groundwater salinity	
	Nitrate, heavy metal, and microbial contamination	
	• Groundwater remediation techniques: Pump-and-treat,	
	bioremediation, and permeable reactive barriers	
	National and international groundwater quality standards	
5.	Groundwater Management and Modelling:	7
	Sustainable groundwater development and management strategies	
	Groundwater balance and safe yield concepts; Overdraft problems	
	and land subsidence; Groundwater modelling: MODFLOW and	
	analytical models	
	Conjunctive use of surface water and groundwater	
	Legal and policy frameworks for groundwater governance.	

	O JOHAN CE ME IN KA				
	COURSE OUTCOMES				
CO 1.	Understand the Fundamentals of Groundwater Hydrology				
CO 2.	Analyze Well Hydraulics and Aquifer Testing				
CO 3.	Explore Groundwater Resources and Development Techniques				
CO 4.	Assess Groundwater Quality and Contamination Issues				
CO 5.	Apply Groundwater Management and Modelling Strategies				

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Groundwater Hydrology – David Keith Todd & Larry W. Mays (3rd Edition, 2004)				
2.	Groundwater Science – Charles R. Fitts (2nd Edition, 2012)				
3.	Handbook of Groundwater Engineering – Jacques W. Delleur (2nd Edition, 2006)				

D 1400

PROGRAMME		B.Tecl	n Civil l	Engineer	ring (Regular)	
SEMESTER		6 th				
COURSE TITLE]	Rural	& Urba	n Sanita	tion	
COURSE CODE		CIV-3	59-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Hydrology and Water Resource Engineering				
	CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45	

COURSE OBJECTIVES				
1.	Understand the principles of sanitation and its impact on public health.			
2.	Differentiate between rural and urban sanitation systems and challenges.			
3.	Analyze various sanitation technologies for wastewater and solid waste management.			
4.	Assess the role of hygiene promotion and behavioural change in improving sanitation.			
5.	Evaluate sanitation policies, programs, and sustainable sanitation solutions.			

	COURSE CONTENT	
Units	Z Topic	Cont. Hours
1.	Introduction to Sanitation and Public Health: Definition and importance of sanitation; Link between sanitation and public health; Historical perspective on sanitation improvements Sanitation coverage: Global and national perspectives Key Sustainable Development Goals (SDGs) related to sanitation.	09
2.	Rural Sanitation: Characteristics and challenges of rural sanitation; Open defecation and its impacts Low-cost sanitation technologies for rural areas like Pit latrines, ventilated improved pit (VIP) latrines, & Twin-pit latrines, composting toilets, biodigesters Community-Led Total Sanitation (CLTS) approach Rural wastewater and greywater management Solid waste management in rural areas.	09
3.	Urban Sanitation: Characteristics and challenges of urban sanitation On-site sanitation systems: Septic tanks, soak pits, biogas digesters Off-site sanitation systems: Sewerage systems, decentralized wastewater treatment systems (DEWATS) Faecal sludge and septage management (FSM) Drainage and storm water management; Urban solid waste management and landfill operations.	09
4.	Hygiene Promotion and Behavioral Change:	

	Importance of hygiene in sanitation; Handwashing and personal	09					
	hygiene practices						
	Hygiene education and awareness campaigns						
	School and community sanitation programs						
	Role of gender and social inclusion in sanitation programs						
	Behavioral change models and case studies						
5.	Sanitation Policies, Sustainability, and Innovations:						
	National and international sanitation policies (Swachh Bharat Mission,						
	WHO, UNICEF, etc.)	09					
	Sustainable sanitation approaches: Eco-sanitation, circular sanitation						
	economy.						
	Emerging technologies in sanitation: Smart toilets, IoT-based sanitation						
	monitoring.						
	Financing and governance of sanitation programs.						

	COURSE OUTCOMES						
CO 1.	Understand the Fundamentals of Sanitation and Public Health						
CO 2.	Evaluate Rural Sanitation Challenges and Solutions						
CO 3.	Analyze Urban Sanitation Systems CIENCE						
CO 4.	Promote Hygiene and Behavioral Change in Sanitation						
CO 5.	Examine Sanitation Policies, Sustainability, and Innovations						

TEXT BOOKS/REFERENCES							
S. No	Book/Text Title						
1.	"Environmental Sanitation and Waste Management" - Alok Sikka, Asit K. Biswas,						
	Cecilia Tortajada (1st Edition, 2020)						
2.	"Environmental Engineering: Water, Wastewater, Soil and Groundwater						
	Treatment and Remediation" - Nelson L. Nemerow (7th Edition, 2022)						
3.	"Sanitation and Sustainable Development in Developing Countries" - Jan-Olof						
	Drangert, Hans-Joachim Mosler(1st Edition, 2023)						

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		7 th				
COURSE TITLE		Hydro	power	Enginee	ering	
COURSE CODE		CIV-408-E				
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Hydrology and Water Resource Engineering				
· ·						
CREDITS AND CONTACT HOURS						
CREDITS L		T	P	P S TOTAL NO. OF CONTACT HOURS		
3	2	1	0	0	45	

COURSE OBJECTIVES						
1.	To gain insight into the basic concepts of hydropower engineering					
2.	To provide insight into the design of various components of hydropower structures					
	such as Dams, penstock, tunnels, surge tanks, draft tubes etc.					
3.	To study the selection of suitable turbines for various types of hydropower plants.					

	COURSE CONTENT					
Units	Topic Topic	Cont. Hours				
1.	INTRODUCTION: Sources and forms of energy, types of power plants and their comparison, elements of hydropower scheme, hydropower development in India, Hydropower plants classification based on head, storage capacity and layout. Estimation of Hydropower potential, Processing of hydrological data, Use of extreme and long term hydrological data, mass and elevation volume curves, flow duration curves. Load and power studies: firm power, secondary power, load curve, load factor, load duration curve, firm capacity, reservoir capacity, capacity factors, Diversity Factor.	7				
2.	WATER CONVEYANCE SYSTEM: Power canals: Alignment, Surges in Canals, Design of power canals. Penstocks: Alignment, types of penstocks, Economic diameter of penstocks, Anchor blocks, Water Hammer, Resonance. Behavior of surge tanks, types of surge tanks, hydraulic design, design of simple surge tank stability.	7				
3.	DAMS: Selection of site, preliminary investigations, Final investigations. Types of Dams, Basic principles of design & details of construction of Gravity Dams. Earthen dams, rock-fill dams and their basic design Considerations. Spillways: Types of spillways, Spillway gates, Design of stilling basins.	6				
4.	HYDRAULIC TURBINES: Types of turbines and their performance characteristics, Selection of turbines and their specific speed, Turbine setting, Scale ratio, Comparison of turbines, Governing of hydraulic turbines.	6				
5.	POWER HOUSE DETAILS: General layout of power house & arrangement of hydropower units, Underground power stations.	4				

	COURSE OUTCOMES							
CO 1.	To understand the role of hydropower in the energy system, in India and							
	internationally.							
CO 2.	To describe the different concepts relevant to hydropower engineering.							
CO 3.	To design essential elements of hydropower plant like conveyance structures,							
	Impoundment structures and Powerhouse.							
CO 4.	To select appropriate Turbine units for a hydropower setting.							
CO 5.	To understand the role of hydropower in the energy system, in India and							
	internationally.							

TEXT BOOKS/REFERENCES						
S. No Book/Text Title Author						
Water Power Engineering	Dandekar, M.M.					
Water Power engineering	Deshmukh, M.M. Danpat Rai & Sons, New Delhi					
Power Plant Engineering	Nag P.K., Tata McGraw Hill, 2nd Edition, 4th reprint 2003.					
Power Plant Engineering	Dr.Sharma P.C, Kataria S. K. & Sons, 2009					
An introduction to power	Rai-Khanna. G.D., Publishers, Delhi, 2013					
	Book/Text Title Water Power Engineering Water Power engineering Power Plant Engineering Power Plant Engineering					

Page | 140

PROGRAMME		B.Tech Civil Engineering (Regular)				
SEMESTER		8 th				
COURSE TITLE		Industrial Waste Water Treatment				
COURSE CODE		CIV-4	54-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Hydrology and Water Resource Engineering				
CREDITS AND CONTACT HOURS						
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS		
3 2		1	0	0	45	

	COURSE OBJECTIVES						
1.	Understand the sources and characteristics of industrial wastewater from various						
	industries						
2.	Analyze physical, chemical, and biological treatment processes for wastewater						
	treatment						
3.	Design primary, secondary, and tertiary treatment systems for industrial effluents						
4.	Explore advanced treatment technologies for removal of emerging contaminants						
5.	Evaluate wastewater reuse, sludge management, and regulatory frameworks						

Z COURSE CONTENT 2							
Units	Topic / S	Cont. Hours					
1.	Industrial Wastewater Characteristics and Regulations: Introduction to industrial wastewater and its environmental impacts Sources and characteristics of industrial wastewater (textile, food, pharmaceuticals, pulp & paper, tannery, chemical industries, etc.) Physicochemical parameters: pH, COD, BOD, TDS, heavy metals, emerging contaminants. Regulatory standards and environmental laws (CPCB, EPA, WHO guidelines). Industrial wastewater monitoring and compliance.	7					
2.	Primary Treatment of Industrial Wastewater: Screening and grit removal. Sedimentation and flotation processes. Equalization and flow regulation. Coagulation and flocculation. Neutralization and pH adjustment.	7					
3.	Secondary (Biological) Treatment Processes: Introduction to biological treatment methods. Aerobic treatment processes: Activated sludge process (ASP), trickling filters, oxidation ponds. Anaerobic treatment processes: UASB reactors, anaerobic digesters, fluidized bed reactors Factors affecting biological treatment efficiency Sludge production and handling.	6					
4.	Advanced Treatment and Resource Recovery: Tertiary treatment methods: Filtration, adsorption, membrane processes (RO, UF, NF). Advanced oxidation processes (AOPs):	6					

	Ozonation, Fenton's reaction, photocatalysis. Removal of nutrients (nitrogen and phosphorus). Heavy metal and emerging contaminant removal. Industrial wastewater reuse and zero liquid discharge (ZLD) concepts.	
5.	Industrial Wastewater Management and Case Studies: Sustainable industrial wastewater treatment approaches. Costeffective treatment solutions for small and large-scale industries. Sludge treatment and disposal methods: Dewatering, composting, incineration Energy recovery from industrial wastewater (biogas, bioelectricity) Case studies: Successful industrial wastewater treatment plants (pharmaceuticals, textiles, breweries, etc.); Future trends in industrial wastewater treatment.	4

	COURSE OUTCOMES
CO 1.	Understand Industrial Wastewater Characteristics and Regulations
CO 2.	Apply Primary Treatment Techniques like creening, grit removal, sedimentation, flow
	equalization and coagulation-flocculation
CO 3.	Evaluate Secondary (Biological) Treatment Processes like aerobic and anaerobic
	biological treatment methods
CO 4.	Develop Sustainable Industrial Wastewater Management Strategies

	TEXT BOOKS/REFERENCES							
S. No	Book/Text Title							
1.	"Wastewater Engineering: Treatment and Resource Recovery" - Metcalf &							
	Eddy (Revised by George Tchobanoglous, Franklin L. Burton, H. David Stensel) (5th							
	Edition, 2014)							
2.	"Industrial Water Quality" - Ellen E. Goyer and William Wesley Eckenfelder Jr. (4th							
	Edition, 2020)							
3.	"Industrial Wastewater Treatment" - Patricia L. Keen and Eric H. Hart (2nd Edition,							
	2016)							

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		3 rd					
COURSE TITLE	2	Introduction to Pavement Material					
COURSE CODE		CIV-2	10-Е				
COURSE CATEGORY		Professional Elective Course (PEC)					
ELECTIVE TRACK		Transportation Engineering					
CREDITS AND CONTACT HOURS							
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3 2		1	0	0	45		

	COURSE OBJECTIVES						
1.	To introduce the basic concepts and importance of pavement materials in road						
	construction.						
2.	To understand the properties, classification, and testing of soils used in pavements.						
3.	To study the characteristics, tests, and role of aggregates in pavement performance.						
4.	To learn about types, properties, and testing of bituminous materials used in						
	pavements.						
5.	To explore advanced, eco-friendly, and sustainable pavement materials and their						
	applications.						

LL		
	COURSE CONTENT	
Units	Topic (S)	Cont. Hours
1.	Introduction to Pavement Materials.	9
	Overview of pavement materials; types of pavements - flexible and rigid; functions of pavement layers; requirements and desirable properties of pavement materials; material selection criteria.	
2.	Soil as a Pavement Material.	8
	Types of soils used in pavements; engineering and index properties of soil; soil classification systems; standard laboratory tests - Proctor, CBR, Atterberg limits; soil stabilization techniques.	
3.	Aggregates for Pavement Construction.	10
	Sources and types of aggregates; properties - strength, shape, gradation; tests - impact, abrasion, crushing, soundness, flakiness; use of recycled aggregates; influence on pavement performance.	
4.	Bituminous Materials.	9
	Types of bituminous binders; properties and specifications; grading systems; standard tests - penetration, ductility, softening point, viscosity; bituminous mix design basics; modified binders.	

5.	Advanced and Sustainable Pavement Materials.	9
	Innovative materials - Geosynthetics, polymers, fibers; recycling and	
	use of waste materials; sustainability and environmental	
	considerations in material selection; recent case studies.	

	COURSE OUTCOMES					
CO 1.	Explain the significance of pavement materials in construction and performance.					
CO 2.	Analyze soil properties, classifications, and interpret test results for pavement					
	applications.					
CO 3.	Assess aggregate properties and perform standard tests related to pavement					
	performance.					
CO 4.	Evaluate bituminous materials based on types, properties, and standard testing					
	procedures.					
CO 5.	Apply knowledge of modern and sustainable materials in pavement design and					
	construction.					

	CCIENCE						
	TEXT BOOKS/REFERENCES						
S. No	Book/Text Title						
1.	Khanna, S. K., Justo, C. E. G., & Veeraragavan, A. (2019). Highway Engineering. Nem Chand & Bros.						
2.	Sharma, S. K. (2017). Principles, Practice and Design of Highway Engineering. S. Chand Publishing.						
3.	Vinson, T. S. (1996). Pavement materials for environmental conditions. CRC Press.						
4.	Huang, Y. H. (2004). Pavement Analysis and Design (2nd ed.). Pearson Prentice Hall.						
5.	National Highway Institute. (2006). Pavement Material Characterization. Federal Highway Administration, USA.						

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		4 th					
COURSE TITLE	2	Road	Safety a	and Man	agement		
COURSE CODE		CIV-2	CIV-259-E				
COURSE CATEGORY		Professional Elective Course (PEC)					
ELECTIVE TRACK		Transportation Engineering					
	·						
CREDITS AND CONTACT HOURS							
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS		
3 2		1	0	0	45		

	COURSE OBJECTIVES						
1.	Understand the fundamentals of road safety and accident analysis.						
2.	Analyze human, vehicle, and road factors contributing to accidents.						
3.	Learn road safety measures, traffic management techniques, and regulations.						
4.	Explore modern road safety audits and management practices.						
5.	Evaluate road safety improvement strategies and implement case studies.						

	COURSE CONTENT	
Units	Topic S	Cont. Hours
1.	Introduction to Road Safety:	9
	Importance, scope, accident statistics, global and Indian road safety	
	scenario, accident investigation and analysis basics.	
2.	Accident Causative Factors: 2005	10
	Human factors, vehicle design factors, road infrastructure,	
	environmental factors, and their impact on accident causation.	
3.	Traffic Management & Road Safety Measures:	8
	Speed management, traffic calming, pedestrian and cyclist safety,	
	traffic signs, road markings, and road furniture.	
4.	Road Safety Audits and Management:	10
	Safety audits process, black spot identification, risk assessment,	
	institutional arrangements, and stakeholder roles.	
5.	Road Safety Improvement Strategies and Case Studies:	8
	Engineering, education, enforcement, emergency care strategies,	
	case studies on road safety improvements.	

COURSE OUTCOMES			
CO 1.	Explain the importance of road safety and basic accident analysis methods.		
CO 2.	CO 2. Identify various accident causative factors and conduct basic analysis.		
CO 3.	Apply traffic management techniques and road safety measures.		

CO 4.	Perform road safety audits and propose management strategies.
CO 5.	Recommend suitable improvement strategies based on case studies.

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Khanna, S. K., & Justo, C. E. G. (2017). Highway Engineering. Nem Chand & Bros.				
2.	Kadiyali, L. R. (2013). Traffic Engineering and Transport Planning. Khanna Publishers.				
3.	MoRTH - Road Safety Manual (Government of India Publication)				
4.	IRC Guidelines on Road Safety and Traffic Management				

PROGRAMME		B.Tech Civil Engineering (Regular)			
SEMESTER		5 th			
COURSE TITLE]	Susta	inable	Transp	ortation Infrastructure
COURSE CODE		CIV-3	10-Е		
COURSE CATEGORY		Professional Elective Course (PEC)			
ELECTIVE TRACK		Transportation Engineering			
CREDITS AND CONTACT HOURS					
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS
3 2 1 0 0 45		45			

	COURSE OBJECTIVES				
1.	Understand the fundamental principles of sustainable transportation systems.				
2.	Evaluate various green and eco-friendly transportation modes and technologies.				
3.	Analyze policies and planning methods for sustainable transportation infrastructure.				
4.	Explore the role of renewable energy and intelligent transport systems (ITS) in				
	transportation.				
5.	Assess the environmental and economic impacts of sustainable transportation				
	solutions.				

Z COURSE CONTENT				
Units	Topic \ \	Cont. Hours		
1.	Introduction to Sustainable Transportation:	10		
	Concept and definition of Sustainable Transportation			
	Importance of sustainability in transportation			
	Global environmental issues related to transport			
	Principles of sustainable transportation systems			
	Sustainable Development Goals (SDGs) and their relevance to			
2.	transportation Green Transportation Modes and Technologies:	9		
Z.	Overview of public transport systems – Metro, Bus Rapid Transit	9		
	(BRT)			
	Non-Motorized Transport (NMT) – Cycling, Walking infrastructure			
	Introduction to Electric Vehicles (EVs) and Hybrid Vehicles			
	Low-emission vehicles and fuel-efficient technologies			
3.	Sustainable logistics and freight transportation systems	8		
Э.	Sustainable Transportation Planning and Policy:	0		
	Principles of land-use and transportation integration			
	Transport policies promoting sustainability			
	Regulatory frameworks and environmental standards			
	Public participation and community engagement in planning			

	Funding mechanisms and government initiatives for sustainable transport	
4.	Renewable Energy and Intelligent Transport Systems	10
	(ITS):	
	Role of renewable energy in transportation sector	
	ITS applications in traffic management and public transport	
	Smart transportation networks and future trends	
	Energy efficiency measures and green infrastructure	
	Data-driven approaches and technology innovations	
5.	Environmental and Economic Impacts of Sustainable	8
	Transport:	
	Assessing environmental impacts – Air pollution, Noise, Carbon	
	footprint	
	Life Cycle Assessment (LCA) of transportation projects	
	Cost-benefit analysis of sustainable transport solutions	
	Global case studies on successful sustainable transportation projects	
	Challenges and future prospects in sustainable transportation	

	COURSE OUTCOMES				
CO 1.	Explain the basic concepts and need for sustainable transportation systems.				
CO 2.	Compare different sustainable transportation modes and their applications.				
CO 3.	Formulate sustainable transportation plans integrating modern policies and				
	strategies.				
CO 4.	Interpret the significance of renewable energy and ITS in sustainable transport.				
CO 5.	Evaluate sustainable transportation solutions in terms of their environmental and				
	economic impacts.				

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Sinha, K.C., & Labi, S. (2007). Transportation Decision Making: Principles of Project				
	Evaluation and Programming. Wiley.				
2.	Black, W.R. (2010). Sustainable Transportation: Problems and Solutions. Guilford Press.				
3.	Litman, T. (2021). Transportation and Environmental Policy. Victoria Transport Policy				
	Institute.				
4.	World Bank Group. (2018). Sustainable Transport: A Sourcebook for Policy-makers in				
	Developing Cities.				
5.	OECD. (2015). Green Growth and Transport. OECD Publishing.				

PROGRAMME	B.Tech Civil Engineering (Regular)
SEMESTER	6 th
COURSE TITLE	Transport Innovations and Industrial Progress
COURSE CODE	CIV-360-E

COURSE CATE	Profes	ssional	Elective	Course (PEC)	
ELECTIVE TRACK		Trans	portati	on Engi	neering
	CREDITS AND CONTACT HOURS				
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS	
3	2	1	0	0	45

	COURSE OBJECTIVES				
1.	Understand the evolution and significance of transport systems in industrial				
	development.				
2.	Analyze various modern transportation innovations and their industrial applications.				
3.	Explore the economic impact of transportation advancements on industrial growth.				
4.	Evaluate environmental and societal aspects of transport innovations.				
5.	Identify future trends and challenges in transportation and industrial progress.				

	COURSE CONTENT				
Units	Topic CE C	Cont. Hours			
1.	Historical Evolution of Transport Systems:	9			
	Introduction to the evolution of transport systems.				
	Role of early transportation in industrial revolutions.				
	Development of maritime, rail, and road transport.				
	Case studies of industrial growth enabled by transportation.	7			
2.	Modern Transport Innovations:	7			
	Introduction to modern transport systems: High-speed rail, electric vehicles, hyper loop.				
	Industrial applications of cutting-edge transport technologies.				
	Role of AI, IoT, and automation in transportation.				
	Case studies on innovative transport-driven industries.				
3.	Economic Impact of Transportation on Industrial	7			
	Progress:				
	Transportation infrastructure and economic growth.				
	Trade expansion and global industrial connectivity.				
	Public and private investments in transportation.				
	Case studies highlighting economic transformations via				
4.	transportation.	3			
4.	Environmental and Societal Aspects of Transportation:	3			
	Environmental challenges and sustainable transport solutions.				
	Impact on urbanization, employment, and society.				
	Green transportation technologies and policies.				
	Global and regional case studies on environmental impacts.				

5.	Future Trends and Challenges in Transport and	4
	Industry:	
	Emerging technologies: Autonomous vehicles, drones, space transport.	
	Industrial adaptations to futuristic transportation.	
	Policy and regulatory challenges.	
	Future case scenarios and industrial opportunities.	

	COURSE OUTCOMES			
CO 1.	Demonstrate understanding of historical transport systems and their industrial			
	impact.			
CO 2.	Apply knowledge of modern transport innovations in industrial contexts.			
CO 3.	Assess the economic contributions of transportation to industrial progress.			
CO 4.	Analyze the environmental and social implications of transportation systems.			
CO 5.	Predict future transportation trends and propose innovative industrial solutions.			

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Rodrigue, J. P. (2020). The Geography of Transport Systems. Routledge.				
2.	Gwilliam, K. (2003). Transport infrastructure and economic development. World Bank.				
3.	Button, K. (2010). Transport Economics. Edward Elgar Publishing.				
4.	Coyle, J. J., et al. (2017). Transportation: A Supply Chain Perspective. Cengage Learning.				
5.	Banister, D. (2002). Transport Planning. Taylor & Francis.				

TUST

PROGRAMME		B.Tech Civil Engineering (Regular)			
SEMESTER		7 th			
COURSE TITLE]	Trans	portati	on Planr	ning And Economics
COURSE CODE		CIV-409-E			
COURSE CATEGORY		Professional Elective Course (PEC)			
ELECTIVE TRACK		Transportation Engineering			
	CREDITS AND CONTACT HOURS				
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2		1	0	0	45

	COURSE OBJECTIVES
1.	To familiarize students with the key factors that affect vehicle dynamics and their
	implications on road design.
2.	To enable students to apply principles of physics and engineering to compute critical
	sight distance requirements for safe driving.
3.	To introduce students to fundamental traffic flow concepts and modelling techniques
	used in transportation engineering. CIENCE
4.	To equip students with the skills to Analyze and assess traffic performance using level
	of service criteria.
5.	To train students in the application of Highway Capacity Software for evaluating and
	improving roadway performance.

	COURSE CONTENT				
Units	ESTID Topic 2005	Cont. Hours			
1.	Introduction: IUST	7			
	Scope of transportation planning and transportation economics,				
	transportation planning issues.				
2.	Public Transportation:	9			
	public transport modes, desirable characteristics of public				
	transport systems, transit system operations, route				
	development, stopping policy, stop location, scheduling, the				
	capacity of transit systems, socially optimal pricing.				
3.	Transport analysis and forecasting:	10			
	Transport planning process, transportation and land use,				
	transport planning strategies, transport planning models, travel				
	demand analysis, operational transportation, and land use,				
	models.				
4.	Transport economics and finance:	9			
	Pavement economics- construction cost; maintenance cost and				
	vehicle operation cost, economic evaluation of highway projects-				
	basic principles.				

5.	Transportation Economics:	10
	Time value of money; costs and benefits; net present value (NPV)	
	method; benefit cost (B/C) ratio method; internal rate of return	
	(IRR) method; comparison of evaluation techniques, freight	
	transport-trends, and economic growth.	

	COURSE OUTCOMES
CO 1.	Understand the factors influencing road vehicle performance characteristics and
	design.
CO 2.	Apply basic science principles in estimating stopping and passing sight distance
	requirements.
CO 3.	Understand basic traffic stream parameters and models, traffic flow models, and
	queuing theory.
CO 4.	Perform level of service analysis to determine LOS for selected highway segments.
CO 5.	Use Highway Capacity Software (HCS) for finding LOS.

	TEXT BOOKS/REFERENCES						
S. No	Book/Text Title	Author					
1.	Transport Planning and Traffic	CA O'Flaherty, John Wiley & Sons, Inc.,					
	Engineering S	New York; Toronto.					
2.	Transportation Engineering and	Papacostas&Prevedouros, Prentice-Hall of					
	Planning	India Private Ltd, New Delhi-110001					
3.	Principles of Transportation Engineering	Chakarborty& Das, Prentice-Hall of India					
	3	Private Ltd, New Delhi-110001					
4.	Urban Transportation Planning	Meyer & Miller, McGraw Hill, New Delhi					
5.	Transport Planning and Traffic	CA O'Flaherty, John Wiley & Sons, Inc.,					
	Engineering	New York; Toronto.					

PROGRAMME		B.Tecl	ı Civil I	Engineer	ing (Regular)
SEMESTER		8 th			
COURSE TITLE]	Design	n and M	laintena	nce of Roads
COURSE CODE		CIV-4	55-E		
COURSE CATEGORY		Professional Elective Course (PEC)			
ELECTIVE TRACK		Transportation Engineering			
	CREDITS AND CONTACT HOURS				
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS	
3 2 1 0		0	45		

	COURSE OBJECTIVES			
1.	Understand the fundamentals of pavement deterioration and maintenance concepts.			
2.	Identify different types of pavement distress and evaluation methods.			
3.	Analyze rehabilitation techniques and materials used in pavement restoration.			
4.	Learn about pavement performance evaluation and life cycle cost analysis.			
5.	Develop skills to plan and design maintenance strategies for pavements.			

	COURSE CONTENT	
Units	Topic S	Cont. Hours
1.	Introduction to Pavement Maintenance and Rehabilitation:	7
	Overview of pavement types and structures.	
	Need for maintenance and rehabilitation.	
	Factors affecting pavement performance and deterioration.	
	Maintenance strategies: preventive, corrective, and emergency	
	maintenance.	
2.	Pavement Distresses and Evaluation Methods	10
	Types of pavement distresses: cracking, rutting, potholes, surface	
	wear.	
	Visual inspection techniques.	
	Non-destructive evaluation methods: FWD, GPR, deflection	
	measurements.	
	Structural and functional evaluation of pavements.	
3.	Maintenance Materials and Techniques:	8
	Bituminous and concrete patching materials.	
	Crack sealing and filling materials and techniques.	
	Surface treatments: slurry seal, fog seal, chip seal, micro	
	surfacing.	
	Cold and hot recycling techniques.	
4.	Pavement Rehabilitation Techniques:	10
	Overlay design methods and types.	
	Milling and recycling processes.	
	Strengthening techniques for flexible and rigid pavements.	
	Rehabilitation of rural and urban pavements.	

5.	Performance Evaluation and Maintenance Planning:	10
	Pavement Performance models and serviceability index.	
	Life cycle cost analysis and budgeting for pavement maintenance.	
	Prioritization of maintenance projects.	
	Case studies of successful pavement maintenance and	
	rehabilitation projects.	

	COURSE OUTCOMES			
CO 1.	Explain the causes of pavement deterioration and importance of maintenance.			
CO 2.	Detect and evaluate various pavement distresses using standard procedures.			
CO 3.	Choose appropriate rehabilitation techniques and materials for pavement repair.			
CO 4.	Evaluate pavement performance and conduct life cycle cost analysis.			
CO 5.	Formulate maintenance plans considering technical and economic aspects.			

	TEXT BOOKS/REFERENCES					
S. No	Book/Text Title	Author				
1.	Principles of Pavement Design	Yoder, E.J. and Witczak, M.W.				
2.	Pavement Analysis and Design	Huang, Y.H.				
3.	Specifications for Road and Bridge Works	MORTH				
4.	Highway Engineering	Khanna, S.K. and Justo, C.E.G.				
5.	Principles, Practice and Design of Highway	Sharma, S.K.				
	Engineering					

TILIST

Page | 154

PROGRAMME		B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		3 rd				
COURSE TITLE]	Soft S	kills for	· Civil En	gineers	
COURSE CODE		CIV-2	11-E			
COURSE CATEGORY		Professional Elective Course (PEC)				
ELECTIVE TRACK		Skill Development in Civil Engineering				
	·					
	CREDITS AND CONTACT HOURS					
CREDITS L T P		S	TOTAL NO. OF CONTACT HOURS			
3	3 2 1 0 0 45		45			

	COURSE OBJECTIVES
1.	Understand the importance of effective communication in the civil engineering
	profession.
2.	Develop interpersonal and teamwork skills essential for project-based environments.
3.	Enhance presentation and public speaking abilities with practical applications.
4.	Learn time management and stress-handling strategies for academic and workplace
	efficiency.
5.	Foster leadership qualities and ethical decision-making in professional settings.

	Z COURSE CONTENT	
Units	O Topic	Cont. Hours
1.	Introduction to Communication Skills:	12
	Verbal and non-verbal communication	
	Listening skills	
	Writing professional emails IUST	
	Communication in project teams	
	Role-plays and case studies	
2.	Teamwork and Collaboration:	8
	Team roles and dynamics	
	Conflict resolution	
	Working in interdisciplinary teams	
	Group discussions and feedback techniques	
3.	Presentation and Public Speaking:	8
	Designing presentations	
	Using visual aids	
	Handling Q&A sessions	
	Speaking confidently in public	
4.	Time and Stress Management:	10
	Prioritization techniques	
	Work-life balance	
	Coping with pressure	
	Academic vs professional stress	
5.	Leadership and Professional Ethics:	7

Leadership theories and styles	
Responsibility and accountability	
Engineering ethics and codes	
Ethical dilemmas	

	COURSE OUTCOMES
CO 1.	Demonstrate effective communication techniques suited to civil engineering
	scenarios.
CO 2.	Collaborate efficiently in team-oriented tasks and civil engineering projects.
CO 3.	Deliver structured oral presentations and manage professional interactions.
CO 4.	Apply time and stress management techniques to balance academic and fieldwork.
CO 5.	Display leadership behaviour with ethical responsibility in engineering roles.

	TEXT BOOKS/REFERENCES				
S. No	Book/Text Title				
1.	Meenakshi Raman & Sangeeta Sharma, Technical Communication, Oxford University				
	Press.				
2.	Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press.				
3.	P. Subba Rao, Management and Organizational Behavior, Himalaya Publishing.				
4.	Stephen Covey, The 7 Habits of Highly Effective People, Free Press.				
5.	Carnegie Dale, How to Win Friends and Influence People, Simon & Schuster.				

IUST

Page | 156

PROGRAMME	B.Tecl	n Civil I	Engineer	ring (Regular)	
SEMESTER		4 th			
COURSE TITLE	2	Entre	preneu	rship & S	Start-ups in Civil Engineering
COURSE CODE		CIV-2	60-E		
COURSE CATE	GORY	Professional Elective Course (PEC)			
ELECTIVE TRACK		Skill Development in Engineering			
	·				
	CREDITS AND CONTACT HOURS				
CREDITS L T		T	P	S	TOTAL NO. OF CONTACT HOURS
3	3 2 1 0 0 45		45		

	COURSE OBJECTIVES
1.	To introduce the fundamentals of entrepreneurship and its relevance in civil
	engineering.
2.	To develop business planning and managerial skills related to construction start-ups.
3.	To analyse market feasibility and funding mechanisms for civil engineering start-ups.
4.	To impart knowledge about legal, ethical, and regulatory frameworks in the start-up
	ecosystem.
5.	To promote innovation, sustainability, and problem-solving abilities for start-up
	success.

COMPCE COMPENIE					
COURSE CONTENT					
Units	Topic	Cont. Hours			
1.	Entrepreneurship Fundamentals: 2005	12			
	Definition, need and importance of entrepreneurship in civil				
	engineering.				
	Entrepreneurial mind set and characteristics of successful				
	entrepreneurs.				
	Types of entrepreneurship: social, tech-based, green and scalable start-				
	ups. Civil engineering start-ups: Case studies and local relevance.				
	Role of entrepreneurship in national development and infrastructure.				
2.	Business Planning and Idea Generation:	8			
	Identifying problems and converting them into business ideas.				
	Feasibility study and SWOT analysis for civil engineering ventures.				
	Business model canvas, value proposition design, and lean start-up				
	principles. Drafting business plans: mission, vision, market research,				
	team and operations.				
3.	Funding and Financial Aspects:	8			
	Sources of funding: angel investors, venture capital, government				
	schemes. Basics of start-up financing, revenue models, budgeting, and				
	cost estimation. Preparing financial projections and investor pitch.				
	Understanding start-up incubators and accelerators in India.				
4.	Legal and Ethical Aspects:	10			

	Legal structure of start-ups: sole proprietorship, partnership, Pvt. Ltd. companies. IPR, patents, copyrights, and trademarks relevant to civil start-ups. Environmental and labour regulations applicable to construction start-ups. Ethics in business and corporate social responsibility (CSR).	
5.	Innovation, Sustainability & Start-up Management:	7
	Design thinking and innovation in construction technologies.	
	Sustainable practices in civil engineering and start-up ecosystems.	
	Project management basics for start-up success.	
	Scaling strategies and exit planning for civil engineering start-ups.	

COURSE OUTCOMES					
CO 1.	Understand the concept and importance of entrepreneurship in civil engineering.				
CO 2.	Develop and present business plans for start-up ventures in construction and				
	infrastructure.				
CO 3.	Evaluate market opportunities and funding options for civil engineering start-ups.				
CO 4.	Apply legal and ethical practices in establishing and running start-ups.				
CO 5.	Demonstrate innovative thinking to solve real-world civil engineering problems				
	through start-ups.				

TEXT BOOKS/REFERENCES					
S. No	Book/Text Title				
1.	Hisrich, R. D., Peters, M. P., & Shepherd, D. A. (2017). Entrepreneurship. McGraw-Hill				
	Education.				
2.	Timmons, J. A., & Spinelli, S. (2009). New Venture Creation: Entrepreneurship for the				
	21st Century. McGraw-Hill.				
3.	Kuratko, D. F. (2016). Entrepreneurship: Theory, Process, and Practice. Cengage				
	Learning.				
4.	Innovation and Entrepreneurship Development, by SS Khanka, S. Chand Publishing.				
5.	Start-up India Learning Program by Invest India: https://www.startupindia.gov.in				

PROGRAMME		B.Tecl	n Civil l	Engineer	ring (Regular)		
SEMESTER		5 th					
COURSE TITLE	<u> </u>	Plasti	: Waste	Manage	ement		
COURSE CODE		CIV-3	11-E				
COURSE CATEGORY		Professional Elective Course (PEC)					
ELECTIVE TRACK		Skill Development in Civil Engineering					
	·						
	CREDITS AND CONTACT HOURS						
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS			
3 2		1	0	0	45		

	COURSE OBJECTIVES						
1.	Gain knowledge about types, uses, and global statistics of plastics. Analyze the sources						
	and production of plastic waste.						
2.	Study the Plastic Waste Management Rules 2016 (India) and global regulatory						
	frameworks.						
3.	Understand plastic bans, including international policies and their environmental						
	impact.						
4.	Investigate plastic waste utilization in construction and infrastructure development.						
5.	Evaluate greener alternatives to plastics and approaches for sustainable materials.						

	COURSE CONTENT						
Units	Topic	Cont. Hours					
1.	Introduction to Plastics: ESTD. 2005	8					
	Definition and classification of plastics.						
	Types and uses of plastics across industries.						
	Global statistics on plastic production and consumption.						
	Sources and scale of plastic waste in India and globally.						
2.	Plastic waste management Rules:	8					
	Sources of plastic waste.						
	Overview of Plastic Waste Management Rules 2016 (India).						
	Comparison with global plastic waste policies and practices.						
3.	Plastic Bans and effects:	8					
	Plastic bans and their implications – global case studies.						
	The China Sword Policy and its impact on international recycling.						
	Impact of plastics on marine life, wildlife, human health, and						
	ecosystems.						
4.	Plastics in Construction:	8					
	Plastic waste management practices in construction.						
	Use of plastic in roads and infrastructure projects.						
	Technical challenges and environmental concerns.						
5.	Alternatives to plastics	8					

Alternative materials to plastics.
Innovations in biodegradable plastics and green materials.
Strategies for sustainable plastic reduction.

COURSE OUTCOMES					
CO 1.	Understand plastic types, uses, and analyse plastic waste generation patterns globally				
	and in India.				
CO 2.	Interpret national and international plastic waste management rules.				
CO 3.	Critically evaluate the effect of bans and the environmental impact of plastic pollution.				
CO 4.	Apply plastic waste utilization techniques in construction projects.				
CO 5.	Assess potential eco-friendly alternatives to conventional plastics.				

TEXT BOOKS/REFERENCES								
S. No	Book/Text Title	Author						
1.	Plastics Recycling: Challenges and	Hopewell, Jefferson & P. D. Jones (2009)						
	Opportunities							
2.	Green Plastics: An Introduction to the NCA	A. Stevens (2002)						
	New Science of Biodegradable Plastics	TO THE CONTRACT OF THE PROPERTY OF THE PROPERT						
3.	Plastic Waste and Management	Agarwal, S.K. (2005)						
4.	Handbook of Plastic Recycling	Vannessa Goodship						
5.	Modern Plastic Engineering	W. L. Lenz						

IUST

Ради

PROGRAMME		B.Tech Civil Engineering (Regular)					
SEMESTER		6 th					
COURSE TITLE]	Progr	ammin	g for Eng	gineers		
COURSE CODE		CIV-3	61-E				
COURSE CATEGORY		Professional Elective Course (PEC)					
ELECTIVE TRACK		Skill Development in Civil Engineering					
	·						
	CREDITS AND CONTACT HOURS						
CREDITS	T	P	S	TOTAL NO. OF CONTACT HOURS			
3 2		1	0	0	45		

	COURSE OBJECTIVES					
1.	To develop programming skills in Engineering students using two open-access data					
	Analysis-oriented languages R and Python.					
2.	Master the use of the R and R Studio for interactive environment.					
3.	Understand the different data types in R.					
4.	To study how to Read Structured Data into R from various sources.					
5.	To be able to use Programming in Research projects at Graduate/Post Graduate level					

COURSE CONTENT						
Units	Topic	Cont. Hours				
1.	Introduction: 4	07				
	Introduction to R Studio: Installing R Studio, overview, packages,					
	getting Help ESTD. 2005					
2.	Data Types And Data Import: IUST	11				
	Data Types: R Objects and attributes, vectors and lists, matrices;					
	factors; data frames, dates and times; reading tabular data; Sub-					
	setting and Operations. Some					
	practical applications					
3.	Loops And Choices:	09				
	Control Structures - Introduction; choices and loops, Loop					
	functions: lapply; mapply; tapply; Some examples					
4.	Creating Functions In "R":	09				
	Functional Programming: Introduction, coding standards; piping;					
	Practical applications;Some packages for Civil Engineers					
5.	Python:	09				
	Introduction: installation Anaconda and overview, libraries, and					
	getting help. Data types and					
	structures: strings, scalars, vectors, matrices, lists, reading tabular					
	data, Numpy and Pandas					

COURSE OUTCOMES					
CO 1.	Learn the core tools for data science with R				
CO 2.	Build your own functions in R				
CO 3.	To learn how to get your data in and out of R				
CO 4.	Learn the fundamentals of statistics and apply them in practice				
CO 5.	Work with R's conditional statements, functions, and loops				

TEXT BOOKS/REFERENCES							
S. No	Book/Text Title	Author					
1.	R for Data Science: Import, Tidy, Transform, Visualize,	Hadley Wickham					
	and Model Data (1st Edition)						
2.	Advanced R (2 nd Edition)	Hadley Wickham,					
		Chapman & Hall					
3.	Introduction to Computation and Programming Using	John V. Guttag					
	Python (2 nd Edition)						

PROGRAMME		B.Tech Civil Engineering (Regular)							
SEMESTER		7 th							
COURSE TITLE		AI & Machine Learning in Civil Engineering							
COURSE CODE		CIV-410-E							
COURSE CATEGORY		Professional Elective Course (PEC)							
ELECTIVE TRACK		Skill Development in Civil Engineering							
CREDITS AND CONTACT HOURS									
CREDITS	L	T	P	S	TOTAL NO. OF CONTACT HOURS				
3	2	1	0	0	45				

COURSE OBJECTIVES						
1.	To introduce basic concepts of Artificial Intelligence and Machine Learning.					
2.	To explore supervised learning techniques and applications in civil projects.					
3.	To understand unsupervised learning and its role in infrastructure analytics.					
4.	To apply ML algorithms for structural health monitoring and predictive modelling.					
5.	To explore the integration of AI tools in planning, design, and construction.					

COURSE CONTENT						
Units	F Topic (C)	Cont. Hours				
1.	Introduction to AI and ML:	12				
	Definitions, scope, applications in civil engineering.					
	Difference between AI, ML, DL; importance of data-driven approaches.					
	Case studies in AI applications across construction, traffic, geotech, and structures.					
2.	Supervised learning:	8				
	Linear regression, Decision trees, SVM.					
	Data pre-processing and feature engineering in civil datasets.					
	Application of supervised models in cost estimation, traffic					
	modelling.					
3.	Unsupervised learning:	8				
	Clustering, PCA, and anomaly detection.					
	Use in material classification, geospatial clustering, remote sensing.					
	Pattern discovery in historical construction or disaster data.					
4.	Structural Health Monitoring by AI & ML:	9				
	ML for structural health monitoring, sensor data analysis.					
	Predictive maintenance using time-series and classification models.					
	Smart building systems and risk prediction models.					
5.	Introduction to civil project workflows:	8				
	AI tools in BIM, design automation, and project planning.					
	Ethics in AI, data privacy in engineering, model interpretability.					
	Emerging trends – reinforcement learning, GANs, and digital twins.					

Page | 163